Run Gibbs sampler without covariates
Usage
prepost_gibbs_nocovar(
formula,
data,
prepost,
moderator,
iter = 1000,
thin = 1,
burn = 0,
monotonicity = TRUE,
stable = TRUE,
priors,
predictive = FALSE
)
Arguments
- formula
A formula with syntax
y ~ t
, wherey
is the name of the outcome variable andt
is the name of the treatment.- data
A data frame containin the variables in the formula.
- prepost
A one-sided formula with syntax ~ z, where z is the indicator variable for whether the moderator was measured pre- or post-treatment.
- moderator
A formuala with syntax ~ d, where d is the moderator variable for the CATE.
- iter
Numeric, number of iterations for the Gibbs
- thin
Numeric, thinning parameter for the Gibbs
- burn
Numeric, burn in rate for the Gibbs
- monotonicity
A logical signifying whether Gibbs assumes monotonicity.
- stable
A logical signifying whether Gibbs assumes stability.
- priors
A list object containing the priors for the Gibbs sampler. Priors include beta.precision, psi.precision, alpha, y.alpha, and y.beta.
- predictive
A logical indicator for whether to return prior predictive draws (
TRUE
) or posterior draws (FALSE
, default).