
Section 8
Matching and Weighting Estimators

Sooahn Shin

GOV 2003

Nov 4, 2021

1

Overview

● Logistics:
● Pset 7 released! Due at 11:59 pm (ET) on Nov 10

● Today’s topics:
1. Matching estimators
2. Weighting estimators

2

[Review] Observational studies
● Identification

● Most common observational assumptions:
● No unmeasured confounders: Di ⊥⊥ (Yi(0), Yi(1)) ∣ Xi
● Overlap/positivity: 0 < P(Di = 1 ∣ Xi = x) < 1

● Estimand:
● ATE = E[Yi(1) −Yi(0)] (We identified this in Module 5)
● ATT = E[Yi(1) −Yi(0) ∣ Di = 1]
● ATC = E[Yi(1) −Yi(0) ∣ Di = 0]

● Estimation
● Regression estimators: µ̂1(x) and µ̂0(x) (Module 5)
● Matching estimator (for ATT):

τ̂m =
1
n1

n
∑
i=1

Di
⎛

⎝
Yi −

1
M ∑

j∈JM(i)
Yj
⎞

⎠

● Weighting estimators:
● Horvitz-Thompson estimator (= IPW estimator)
● Hajek estimator (normalized weights)

3

[Review] Observational studies
● Identification

● Most common observational assumptions:
● No unmeasured confounders: Di ⊥⊥ (Yi(0), Yi(1)) ∣ Xi
● Overlap/positivity: 0 < P(Di = 1 ∣ Xi = x) < 1

● Estimand:
● ATE = E[Yi(1) −Yi(0)] (We identified this in Module 5)
● ATT = E[Yi(1) −Yi(0) ∣ Di = 1]
● ATC = E[Yi(1) −Yi(0) ∣ Di = 0]

● Estimation
● Regression estimators: µ̂1(x) and µ̂0(x) (Module 5)
● Matching estimator (for ATT):

τ̂m =
1
n1

n
∑
i=1

Di
⎛

⎝
Yi −

1
M ∑

j∈JM(i)
Yj
⎞

⎠

● Weighting estimators:
● Horvitz-Thompson estimator (= IPW estimator)
● Hajek estimator (normalized weights)

3

Types of matching

● Exact matching: choose matches that have the same value of Xi
● Cf: Coarsened Exact Matching (CEM)

● Mahalanobis distance matching: use distance metrics in case of
high dimensional Xi

● Propensity score matching:

(Yi(0),Yi(1)) ⊥⊥ Di ∣ Xi ⇒ (Yi(0),Yi(1)) ⊥⊥ Di ∣ π(Xi)

● This holds under true propensity score π(Xi).
● We need to estimate it (π̂(Xi)): e.g., using logistic regression (can

add interactions) or machine learning.
● Have to check if Xi is actually balanced.

4

Types of matching

● Exact matching: choose matches that have the same value of Xi
● Cf: Coarsened Exact Matching (CEM)

● Mahalanobis distance matching: use distance metrics in case of
high dimensional Xi

● Propensity score matching:

(Yi(0),Yi(1)) ⊥⊥ Di ∣ Xi ⇒ (Yi(0),Yi(1)) ⊥⊥ Di ∣ π(Xi)

● This holds under true propensity score π(Xi).
● We need to estimate it (π̂(Xi)): e.g., using logistic regression (can

add interactions) or machine learning.
● Have to check if Xi is actually balanced.

4

Types of matching

● Exact matching: choose matches that have the same value of Xi
● Cf: Coarsened Exact Matching (CEM)

● Mahalanobis distance matching: use distance metrics in case of
high dimensional Xi

● Propensity score matching:

(Yi(0),Yi(1)) ⊥⊥ Di ∣ Xi ⇒ (Yi(0),Yi(1)) ⊥⊥ Di ∣ π(Xi)

● This holds under true propensity score π(Xi).
● We need to estimate it (π̂(Xi)): e.g., using logistic regression (can

add interactions) or machine learning.
● Have to check if Xi is actually balanced.

4

Types of matching

● Other choices
● Matching ratio: m-to-one matching
● w/ or w/o replacement: consider the number of control units
● Caliper: drop poor matches (estimand changes)

● Algorithm:
● Greedy algorithm: pair two units with the shortest distance, set

them aside, and repeat ↝ depends on order and thus may not be
optimal

● Optimal matching:
● D: n × n matrix of pairwise distance or a cost matrix
● Select n elements of D such that there is only one element in each

row and one element in each column and the sum of pairwise
distances is minimized ↝ linear sum assingment problem

● Assessing balance
● standardized mean differences
● Kolmogorov–Smirnov statistic (comparing distributions)

5

Types of matching

● Other choices
● Matching ratio: m-to-one matching
● w/ or w/o replacement: consider the number of control units
● Caliper: drop poor matches (estimand changes)

● Algorithm:
● Greedy algorithm: pair two units with the shortest distance, set

them aside, and repeat ↝ depends on order and thus may not be
optimal

● Optimal matching:
● D: n × n matrix of pairwise distance or a cost matrix
● Select n elements of D such that there is only one element in each

row and one element in each column and the sum of pairwise
distances is minimized ↝ linear sum assingment problem

● Assessing balance
● standardized mean differences
● Kolmogorov–Smirnov statistic (comparing distributions)

5

Types of matching

● Other choices
● Matching ratio: m-to-one matching
● w/ or w/o replacement: consider the number of control units
● Caliper: drop poor matches (estimand changes)

● Algorithm:
● Greedy algorithm: pair two units with the shortest distance, set

them aside, and repeat ↝ depends on order and thus may not be
optimal

● Optimal matching:
● D: n × n matrix of pairwise distance or a cost matrix
● Select n elements of D such that there is only one element in each

row and one element in each column and the sum of pairwise
distances is minimized ↝ linear sum assingment problem

● Assessing balance
● standardized mean differences
● Kolmogorov–Smirnov statistic (comparing distributions)

5

Matching estimators

● Workflow (in general):
1. Check the balance before the matching
2. Choose matching type (compute/estimate the distance/balancing

score if necessary)
3. Conduct matching (check the matched dataset)
4. Check the balance after the matching
5. Estimate ATT using matching estimator (τ̂m)
6. Estimate the standard error
● w/o replacement: cluster bootstrap
● w/ replacement: use Abadie and Imbens (2006) estimator

● Useful packages:
● cobalt: for balance check (bal.tab() and love.plot())
● MatchIt: for matching
● Matching: for matching + estimating
● Machine learning packages for estimating π̂(Xi): e.g., randomForest
● Optimal matching: clue::solve_LSAP()

6

Matching estimators

● Workflow (in general):
1. Check the balance before the matching
2. Choose matching type (compute/estimate the distance/balancing

score if necessary)
3. Conduct matching (check the matched dataset)
4. Check the balance after the matching
5. Estimate ATT using matching estimator (τ̂m)
6. Estimate the standard error
● w/o replacement: cluster bootstrap
● w/ replacement: use Abadie and Imbens (2006) estimator

● Useful packages:
● cobalt: for balance check (bal.tab() and love.plot())
● MatchIt: for matching
● Matching: for matching + estimating
● Machine learning packages for estimating π̂(Xi): e.g., randomForest
● Optimal matching: clue::solve_LSAP()

6

Example: LaLonde dataset

● The effectiveness of a job trainining program (National Supported
Work Demonstration; NSW) on wage increases.

● The federal government instituted a randomized evaluation of this
program

● How well the result may be recovered when the experimental
controls are replaced with a set of observational controls
(Population Survey of Income Dynamics; PSID)?

● Problem: Imbalances between the experimental and observational
data ↝ use matching

7

Example: LaLonde dataset

● Data:
● Treated: 185 units from NSW
● Control: 2490 units from PSID
● Treatment: Participation in the job training program (nsw)
● Outcome: 1978 earnings (in dollars; re78)
● Pre-treatment covariates: age, race, marriage, past earnings, past

employment

8

Example: Balance before matching

library(cobalt)

bal.tab(x = dat[,pretreat_covariates],

treat = dat$nsw, continuous = "std", binary = "std")

9

Example: Balance before matching

Balance Measures

Type Diff.Un

age Contin. -1.0094

educ Contin. -0.6805

black Binary 1.4816

hisp Binary 0.1288

married Binary -1.8453

re74 Contin. -1.7178

re75 Contin. -1.7744

u74 Binary 1.6454

u75 Binary 1.2309

##

Sample sizes

Control Treated

All 2490 185

10

Example: Propensity score matching

Estimate propensity score using logistic regression

Propensity score

pscores <- glm(nsw ~ age + I(age^2) + black + married + hisp + u74,

family = binomial(), data = dat)$fitted.values

Conduct one-to-one nearest neighbor propensity score matching

library(Matching)

match_ps <- Match(Y=dat$re78, Tr=dat$nsw,

X=pscores, M=1, replace = TRUE, ties = FALSE)

summary(match_ps)

11

Example: Propensity score matching

##

Estimate... -778.31

SE......... 833.23

T-stat..... -0.93409

p.val...... 0.35026

##

Original number of observations.............. 2675

Original number of treated obs............... 185

Matched number of observations............... 185

Matched number of observations (unweighted). 185

12

Example: Propensity score matching

0

25

50

75

0.00 0.25 0.50 0.75 1.00
Propensity Score

de
ns

ity

Group

Control

Treated

Propensity Score Distribution Before Matching

13

Example: Propensity score matching

0.0

0.5

1.0

1.5

0.00 0.25 0.50 0.75 1.00
Propensity Score

de
ns

ity

Group

Control

Treated

Propensity Score Distribution After Matching

14

Example: Propensity score matching

library(cobalt)

love.plot(nsw ~ age+educ+black+hisp+married+re74+re75+u74+u75,

data = dat,

stats = "mean.diffs",

weights = data.frame(Matched = get.w(match_ps)),

method = c("matching"), binary = "std")

15

Example: Propensity score matching

u75

u74

re75

re74

married

hisp

black

educ

age

−4 −2 0
Standardized Mean Differences

Sample

Adjusted

Unadjusted

Covariate Balance

16

Weighting estimators

● Matching is actually a special case of a weighting estimator

● Horvitz-Thompson estimator: weight by inverse propensity score.

ÂTE = τ̂ipw =
1
n

n
∑
i=1
(

DiYi
π̂(Xi)

−
(1 −Di)Yi
1 − π̂(Xi)

)

● Would be unbiased if we knew the true propensity scores, π(Xi)
(Pset 7 Q2 Bonus)

● Under no unmeasured confounders, τ̂ipw
p
→ τ (consistent)

● Hajek estimator: normalizes the weights

● Potential of extreme weights due to lack of overlap: π(Xi) close to
0 or 1
● Windsorizing: trim weights beyond 5th and 95th percentile

17

Example
Generating propensity score weights for the ATT

W.out <- WeightIt::weightit(nsw ~ age + I(age^2) + black + married + hisp + u74, data = dat,

method = "ps", estimand = "ATT")

W
ei

gh
ts

 fo
r

C
on

tr
ol

 U
ni

ts

0 5 10 15 20

0
50

10
0

15
0

20
0

25
0

30
0

35
0

N
or

m
al

iz
ed

 W
ei

gh
ts

 fo
r

C
on

tr
ol

 U
ni

ts

0.00 0.02 0.04 0.06 0.08

0
50

10
0

15
0

20
0

25
0

30
0

35
0

18

Estimating ATT with Weights
append estimated weights

dat <- dat %>% mutate(weights = W.out$weights)

ATT

att_ipw <- function(dat, indices = NULL) {

if (is.null(indices)) indices <- 1:nrow(dat)

dat <- dat[indices,]

weights <- dat %>% filter(treat == 0) %>% pull(weights)

reweights <- weights / sum(weights)

Y1 <- dat %>% filter(treat == 1) %>% pull(re78)

Y0 <- dat %>% filter(treat == 0) %>% pull(re78)

att_ht <- (sum(Y1) - sum(Y0 * weights)) / nobs

att_hjk <- mean(Y1) - sum(reweights * Y0)

return(c(att_ht, att_hjk))

}

Use bootsrap for estimating SE

19

