Section 8

Matching and Weighting Estimators

Sooahn Shin

GOV 2003

Nov 4, 2021

Overview

• Logistics:

• Pset 7 released! Due at 11:59 pm (ET) on Nov 10

• Today's topics:

- 1. Matching estimators
- 2. Weighting estimators

[Review] Observational studies

Identification

- Most common observational assumptions:
 - No unmeasured confounders: $D_i \perp (Y_i(0), Y_i(1)) \mid \mathbf{X}_i$
 - Overlap/positivity: $0 < \mathbb{P}(D_i = 1 | \mathbf{X}_i = x) < 1$
- Estimand:
 - ATE = $\mathbb{E}[Y_i(1) Y_i(0)]$ (We identified this in Module 5)
 - ATT = $\mathbb{E}[Y_i(1) Y_i(0) | D_i = 1]$
 - ATC = $\mathbb{E}[Y_i(1) Y_i(0) | D_i = 0]$

[Review] Observational studies

Identification

- Most common observational assumptions:
 - No unmeasured confounders: $D_i \perp (Y_i(0), Y_i(1)) \mid \mathbf{X}_i$
 - Overlap/positivity: $0 < \mathbb{P}(D_i = 1 | \mathbf{X}_i = x) < 1$
- Estimand:
 - ATE = $\mathbb{E}[Y_i(1) Y_i(0)]$ (We identified this in Module 5)

• ATT =
$$\mathbb{E}[Y_i(1) - Y_i(0) | D_i = 1]$$

• ATC = $\mathbb{E}[Y_i(1) - Y_i(0) | D_i = 0]$

Estimation

- Regression estimators: $\widehat{\mu}_1(\mathbf{x})$ and $\widehat{\mu}_0(\mathbf{x})$ (Module 5)
- Matching estimator (for ATT):

$$\widehat{\tau}_m = \frac{1}{n_1} \sum_{i=1}^n D_i \left(Y_i - \frac{1}{M} \sum_{j \in \mathcal{J}_M(i)} Y_j \right)$$

- Weighting estimators:
 - Horvitz-Thompson estimator (= IPW estimator)
 - Hajek estimator (normalized weights)

• Exact matching: choose matches that have the same value of X_i

• Cf: Coarsened Exact Matching (CEM)

- Exact matching: choose matches that have the same value of X_i
 - Cf: Coarsened Exact Matching (CEM)
- Mahalanobis distance matching: use distance metrics in case of high dimensional X_i

- Exact matching: choose matches that have the same value of X_i
 - Cf: Coarsened Exact Matching (CEM)
- Mahalanobis distance matching: use distance metrics in case of high dimensional X_i
- Propensity score matching:

 $(Y_i(0), Y_i(1)) \perp D_i \mid \mathbf{X}_i \Rightarrow (Y_i(0), Y_i(1)) \perp D_i \mid \pi(\mathbf{X}_i)$

- This holds under **true** propensity score $\pi(\mathbf{X}_i)$.
- We need to estimate it $(\widehat{\pi}(\mathbf{X}_i))$: e.g., using logistic regression (can add interactions) or machine learning.
- Have to check if \mathbf{X}_i is actually balanced.

Other choices

- Matching ratio: *m*-to-one matching
- w/ or w/o replacement: consider the number of control units
- Caliper: drop poor matches (estimand changes)

- Other choices
 - Matching ratio: *m*-to-one matching
 - w/ or w/o replacement: consider the number of control units
 - Caliper: drop poor matches (estimand changes)
- Algorithm:
 - Greedy algorithm: pair two units with the shortest distance, set them aside, and repeat → depends on order and thus may not be optimal
 - Optimal matching:
 - **D**: *n* × *n* matrix of pairwise distance or a cost matrix
 - Select n elements of D such that there is only one element in each row and one element in each column and the sum of pairwise distances is minimized → linear sum assingment problem

- Other choices
 - Matching ratio: *m*-to-one matching
 - w/ or w/o replacement: consider the number of control units
 - Caliper: drop poor matches (estimand changes)
- Algorithm:
 - Greedy algorithm: pair two units with the shortest distance, set them aside, and repeat → depends on order and thus may not be optimal
 - Optimal matching:
 - D: *n* × *n* matrix of pairwise distance or a cost matrix
 - Select *n* elements of **D** such that there is only one element in each row and one element in each column and the sum of pairwise distances is minimized → linear sum assingment problem
- Assessing balance
 - standardized mean differences
 - Kolmogorov–Smirnov statistic (comparing distributions)

Matching estimators

- Workflow (in general):
 - 1. Check the balance before the matching
 - 2. Choose matching type (compute/estimate the distance/balancing score if necessary)
 - 3. Conduct matching (check the matched dataset)
 - 4. Check the balance after the matching
 - 5. Estimate ATT using matching estimator $(\hat{\tau}_m)$
 - 6. Estimate the standard error
 - w/o replacement: cluster bootstrap
 - w/ replacement: use Abadie and Imbens (2006) estimator

Matching estimators

- Workflow (in general):
 - 1. Check the balance before the matching
 - 2. Choose matching type (compute/estimate the distance/balancing score if necessary)
 - 3. Conduct matching (check the matched dataset)
 - 4. Check the balance after the matching
 - 5. Estimate ATT using matching estimator $(\hat{\tau}_m)$
 - 6. Estimate the standard error
 - w/o replacement: cluster bootstrap
 - w/ replacement: use Abadie and Imbens (2006) estimator
- Useful packages:
 - cobalt: for balance check (bal.tab() and love.plot())
 - MatchIt: for matching
 - Matching: for matching + estimating
 - Machine learning packages for estimating $\widehat{\pi}(\mathbf{X}_i)$: e.g., randomForest
 - Optimal matching: clue::solve_LSAP()

Example: LaLonde dataset

- The effectiveness of a job trainining program (National Supported Work Demonstration; NSW) on wage increases.
- The federal government instituted a randomized evaluation of this program
- How well the result may be recovered when the experimental controls are replaced with a set of observational controls (Population Survey of Income Dynamics; PSID)?
- **Problem**: Imbalances between the experimental and observational data → use matching

Example: LaLonde dataset

Data:

- Treated: 185 units from NSW
- Control: 2490 units from PSID
- Treatment: Participation in the job training program (nsw)
- Outcome: 1978 earnings (in dollars; re78)
- Pre-treatment covariates: age, race, marriage, past earnings, past employment

Example: Balance before matching

Example: Balance before matching

Balance Measures

##		Туре	Diff.Un
##	age	Contin.	-1.0094
##	educ	Contin.	-0.6805
##	black	Binary	1.4816
##	hisp	Binary	0.1288
##	married	Binary	-1.8453
##	re74	Contin.	-1.7178
##	re75	Contin.	-1.7744
##	u74	Binary	1.6454
##	u75	Binary	1.2309
##			
##	Sample s	sizes	
##	Cont	rol Trea	ated
##	All 2	2490	185

##

##	Estim	ate	-778	. 31
----	-------	-----	------	------

- ## SE..... 833.23
- ## T-stat.... -0.93409
- ## p.val.... 0.35026

##

##	Original number of observations	2675
##	Original number of treated obs	185
##	Matched number of observations	185
##	Matched number of observations (unweighted).	185


```
library(cobalt)
love.plot(nsw ~ age+educ+black+hisp+married+re74+re75+u74+u75,
    data = dat,
    stats = "mean.diffs",
    weights = data.frame(Matched = get.w(match_ps)),
    method = c("matching"), binary = "std")
```


Weighting estimators

- Matching is actually a special case of a weighting estimator
- Horvitz-Thompson estimator: weight by inverse propensity score.

$$\widehat{\mathsf{ATE}} = \widehat{\tau}_{ipw} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{D_i Y_i}{\widehat{\pi}(\mathbf{X}_i)} - \frac{(1-D_i) Y_i}{1 - \widehat{\pi}(\mathbf{X}_i)} \right)$$

- Would be unbiased if we knew the true propensity scores, $\pi(\mathbf{X}_i)$ (Pset 7 Q2 Bonus)
- Under no unmeasured confounders, $\widehat{\tau}_{ipw} \xrightarrow{p} \tau$ (consistent)
- Hajek estimator: normalizes the weights
- Potential of extreme weights due to lack of overlap: π(X_i) close to 0 or 1
 - Windsorizing: trim weights beyond 5th and 95th percentile

Example

Generating propensity score weights for the ATT

W.out <- WeightIt::weightit(nsw ~ age + I(age^2) + black + married + hisp +</pre>

method = "ps", estimand = "ATT")

Estimating ATT with Weights

```
## append estimated weights
dat <- dat %>% mutate(weights = W.out$weights)
## ATT
att_ipw <- function(dat, indices = NULL) {
    if (is.null(indices)) indices <- l:nrow(dat)
    dat <- dat[indices,]

    weights <- dat %>% filter(treat == 0) %>% pull(weights)
    reweights <- weights / sum(weights)</pre>
```

```
Y1 <- dat %>% filter(treat == 1) %>% pull(re78)
Y0 <- dat %>% filter(treat == 0) %>% pull(re78)
att_ht <- (sum(Y1) - sum(Y0 * weights)) / nobs
att_hjk <- mean(Y1) - sum(reweights * Y0)
return(c(att_ht, att_hjk))</pre>
```

}

Use bootsrap for estimating SE