
Section 5

Observational Studies 2

Sooahn Shin

GOV 2003

Oct 14, 2021

1

Overview

● Logistics:● Pset 5 released! Due at 11:59 pm (ET) on Oct 20

● Today’s topics:
1. Directd Acyclic Graphs

2

Motivation

● Assume that you’ve come out with a DAG based on your expertise.

Z

X

D

U1

Y

M U2

● Suppose you want to identify a causal e�ect of D on Y .

● In a nutshell, what you might want to do is to block all the paths
that yields statistical associations between D and Y .● Thus, you want to find a set of nodes S such that● once we condition on S, no unmeasured confounding holds and● any descend of D is not in S � no post-treatment bias.● � Use backdoor criterion!

3

→

Motivation

● Assume that you’ve come out with a DAG based on your expertise.

Z

X

D

U1

Y

M U2

● Suppose you want to identify a causal e�ect of D on Y .● In a nutshell, what you might want to do is to block all the paths
that yields statistical associations between D and Y .

● Thus, you want to find a set of nodes S such that● once we condition on S, no unmeasured confounding holds and● any descend of D is not in S � no post-treatment bias.● � Use backdoor criterion!

3

Motivation

● Assume that you’ve come out with a DAG based on your expertise.

Z

X

D

U1

Y

M U2

● Suppose you want to identify a causal e�ect of D on Y .● In a nutshell, what you might want to do is to block all the paths
that yields statistical associations between D and Y .● Thus, you want to find a set of nodes S such that● once we condition on S, no unmeasured confounding holds and● any descend of D is not in S � no post-treatment bias.● � Use backdoor criterion!

3

*"¥,

- ×
,
Zim ☒,☒

DAG

● Things we have to know to check the backdoor criterion:

● Three common structures:● confounder (fork): A← C → B● collider (inverted fork): A→ C ← B● mediator (chain): A→ C → B

● How to block a path between A and C● If A← C → B: condition on C .● If A→ C ← B: do not condition on C .● If A→ C → B: condition on C .

● D-separation: A ⊥⊥ B � C
1. Find all paths between A and B.
2. Check if each path is blocked.
3. If all paths are blocked, then A is d-separated from B by C

4

DAG

● Things we have to know to check the backdoor criterion:

● Three common structures:● confounder (fork): A← C → B● collider (inverted fork): A→ C ← B● mediator (chain): A→ C → B

● How to block a path between A and C● If A← C → B: condition on C .● If A→ C ← B: do not condition on C .● If A→ C → B: condition on C .

● D-separation: A ⊥⊥ B � C
1. Find all paths between A and B.
2. Check if each path is blocked.
3. If all paths are blocked, then A is d-separated from B by C

4

DAG

● Things we have to know to check the backdoor criterion:

● Three common structures:● confounder (fork): A← C → B● collider (inverted fork): A→ C ← B● mediator (chain): A→ C → B

● How to block a path between A and C● If A← C → B: condition on C .● If A→ C ← B: do not condition on C .● If A→ C → B: condition on C .

● D-separation: A ⊥⊥ B � C
1. Find all paths between A and B.
2. Check if each path is blocked.
3. If all paths are blocked, then A is d-separated from B by C

4

B

DAG

● Things we have to know to check the backdoor criterion:

● Three common structures:● confounder (fork): A← C → B● collider (inverted fork): A→ C ← B● mediator (chain): A→ C → B

● How to block a path between A and C● If A← C → B: condition on C .● If A→ C ← B: do not condition on C .● If A→ C → B: condition on C .

● D-separation: A ⊥⊥ B � C
1. Find all paths between A and B.
2. Check if each path is blocked.
3. If all paths are blocked, then A is d-separated from B by C

4

B

Backdoor criterion example

Z

X

D

U1

Y

M U2

1. List all of the backdoor paths between D and Y .

2. List all the possible set of nodes S that you can condition on.
3. List all the S such that blocks all the backdoor paths.
4. Among those S, drop the sets which include a descend of D.

5

• Dixit,→ y
• 1) f- 2-←✗← Ui→ Y

Backdoor criterion example

Z

X

D

U1

Y

M U2

1. List all of the backdoor paths between D and Y .
2. List all the possible set of nodes S that you can condition on.

3. List all the S such that blocks all the backdoor paths.
4. Among those S, drop the sets which include a descend of D.

5

¥213M
9×2-9 9km1 47,14

{✗ it ,M}

Backdoor criterion example

Z

X

D

U1

Y

M U2

1. List all of the backdoor paths between D and Y .
2. List all the possible set of nodes S that you can condition on.
3. List all the S such that blocks all the backdoor paths.

4. Among those S, drop the sets which include a descend of D.

5

→☒←
• D←☒←Ui→Y
• btz☐←☒←ui→Y 1)

up5yd 12-1 EM

{✗ it} 9km1 47,14

six.IM

Backdoor criterion example

Z

X

D

U1

Y

M U2

1. List all of the backdoor paths between D and Y .
2. List all the possible set of nodes S that you can condition on.
3. List all the S such that blocks all the backdoor paths.
4. Among those S, drop the sets which include a descend of D.

5

In

R package: dagitty
● DAGitty: www.dagitty.net

library(dagitty)

g <- dagitty('dag {

X [pos="1,-1.5"]

Y [pos="4,0"]

Z [pos="0,0"]

M [pos="3,1.5"]

D [pos="2,0"]

U1 [pos="3,-1.5"]

U2 [pos="5,1.5"]

X -> Z -> D -> Y

X -> D -> M

M <- U2 -> Y

X <- U1 -> Y

}')

latents(g) <- c("U1", "U2")
6

R package: dagitty
plot(g)

D

M

U1

U2

X

YZ

7

R package: dagitty

parents(g, "D")

[1] "X" "Z"

ancestors(g, "D")

[1] "D" "Z" "X" "U1"

children(g, "D")

[1] "M" "Y"

descendants(g, "D")

[1] "D" "Y" "M"

8

R package: dagitty

paths(g, "D", "Y")$paths

[1] "D -> M <- U2 -> Y" "D -> Y" "D <- X <- U1 -> Y"

[4] "D <- Z <- X <- U1 -> Y"

paths(g, "D", "Y", directed = TRUE)$paths # only causal path(s)

[1] "D -> Y"

9

R package: dagitty

dseparated(g, "Z", "D", c("X")) # because of Z -> D

[1] FALSE

dseparated(g, "Z", "M", c("D"))

[1] TRUE

impliedConditionalIndependencies(g)

M _||_ X | D

M _||_ Z | D

Y _||_ Z | D, X

10

*

la-entlgc-aviivzhnux.lk

R package: dagitty

dseparated(g, "Z", "D", c("X")) # because of Z -> D

[1] FALSE

dseparated(g, "Z", "M", c("D"))

[1] TRUE

impliedConditionalIndependencies(g)

M _||_ X | D

M _||_ Z | D

Y _||_ Z | D, X

11

R package: dagitty

adjustmentSets(g, "D", "Y", type="minimal")

{ X }

Caveat: adjustmentSets may include unobserved variables

which we cannot actually condition on.

S = adjustmentSets(g, "D", "Y", type="all")

S[!grepl("U1|U2", S)]

{ X }

{ X, Z }

Note that this implements a slightly more general criterion

(sometimes it may contain descendants)

12

-

=
-

2-

* Frontdoor criterion

PIYldtl-zgpCM-i-mt.it)
¥1714 -1=-0

,Mi=m)pE-y|!④
*☒⇒

