```
* slides are uploaded on
the website-materials!
```

Section 5

Observational Studies 1

Sooahn Shin

GOV 2003

Oct 7, 2021

Overview

- Logistics:
 - No pset this week!
- Today's topics:
 - 1. Review session
 - 2. No unmeasured confounding + regression

What we have learned so far?

- Fisher's approach to inference: randomization inference
- Neyman's approach to inference for the ATE: diff-in-means estimator

What we have learned so far?

- Fisher's approach to inference: randomization inference
- Neyman's approach to inference for the ATE: diff-in-means estimator

 をはます V(を) → ジ(を)
- Analyzing experiments with regression
 - Simple OLS estimator + robust variance estimator
 - + Covariates
 - + Block design
 - + Cluster design

* unblused consistent asymp. norm

variance estimator
-conservative = positive bias
- efficient = small var

What we have learned so far?

- Fisher's approach to inference: randomization inference
- Neyman's approach to inference for the ATE: diff-in-means estimator
- Analyzing experiments with regression
 - Simple OLS estimator + robust variance estimator
 - + Covariates
 - + Block design
 - + Cluster design
- This week: observational studies
 - Before we move on, let's quickly review experimental designs!

- Types of experiments by their assignment mechanism
 - Bernoulli randomization: Each unit is assigned D_i = 1 with prob.
 p independently (coin flips)
 - Completely randomized experiment: Randomly sample n₁ units from the population to be treated
 - Block/stratified randomized experiment: Completely randomized experiment in each block → always efficient for PATE
 - Cluster randomized experiment: Treatment assignment at a higher level → allows for interference within clusters

- Types of experiments by their assignment mechanism
 - Bernoulli randomization: Each unit is assigned D_i = 1 with prob.
 p independently (coin flips)
 - Completely randomized experiment: Randomly sample n_1 units from the population to be treated
 - Block/stratified randomized experiment: Completely randomized experiment in each block → always efficient for PATE
 - Cluster randomized experiment: Treatment assignment at a higher level → allows for interference within clusters
- Exercise: comparing experimental designs through simulation
 - 1. Assume true potential outcomes
 - 2. Select one assignment mechanism
 - 3. Randomly generate treatment assignment
 - 4. Estimate SATE (using diff-in-means estimator)
 - 5. Repeat 3-4 multiple times
 - 6. Draw a distribution of estimates

• Setup:

• SATE =
$$\frac{1}{16} \sum_{i=1}^{16} \tau_i = 8.5$$

• Design is balanced (except for Bernoulli)

balanced (except for Bernoull)							
Unit	$Y_i(0)$	$Y_i(1)$	$ au_{i}$	Block/Cluster			
1	0	1	1	A			
2	0	2	2	Α			
3	0	3	3	Α			
4	0	4	4	Α			
5	0	5	5	В			
:	:	:	÷	:			
16	0	16	16	D			

Setup:

• SATE =
$$\frac{1}{16} \sum_{i=1}^{16} \tau_i = 8.5$$

Design is balanced (except for Bernoulli)

Unit	$Y_i(0)$	$Y_i(1)$	$ au_{i}$	Block/Cluster				
1	0	1	1	Α				
2	0	2	2	Α				
3	0	3	3	Α				
4	0	4	4	Α				
5	0	5	5	В				
:	:	:	:	:				
16	0	16	16	D				

- Q: Which design would have the largest (smallest) variance?
- Check the results here: https: //twitter.com/aecoppock/status/1442545254423486465?s=21

Observational studies

- Problem:
 - Non-randomized treatment
 - \rightarrow { $Y_i(1), Y_i(0)$ } $\not\perp D_i$
 - → selection bias = unidentified ATT

$$\frac{\mathbb{E}[Y_i|D_i=1] - \mathbb{E}[Y_i|D_i=0]}{\text{diff-in-means}} = \underbrace{\tau_t}_{\text{ATT}} + \underbrace{\mathbb{E}[Y_i(0)|D_i=1] - \mathbb{E}[Y_i(0)|D_i=0]}_{\text{selection bias}}$$

$$\underbrace{0 \text{ consistency}}_{\text{Consistency}}$$

$$\underbrace{0}_{\text{T}} + \underbrace{\mathbb{E}[Y_i(0)|D_i=1] - \mathbb{E}[Y_i(0)|D_i=0]}_{\text{Selection bias}}$$

Observational studies

- Problem:
 - Non-randomized treatment
 - \rightarrow { $Y_i(1), Y_i(0)$ } $\not\perp D_i$
 - → selection bias = unidentified ATT

$$\underbrace{\mathbb{E}\big[Y_i\big|D_i=1\big] - \mathbb{E}\big[Y_i\big|D_i=0\big]}_{\text{diff-in-means}} = \underbrace{\tau_t}_{\text{ATT}} + \underbrace{\mathbb{E}\big[Y_i(0)\big|D_i=1\big] - \mathbb{E}\big[Y_i(0)\big|D_i=0\big]}_{\text{selection bias}}$$

- What can we do for the identification?
 - Assume no unmeasured confounding with positivity
 - Partial identification: analysis of bounds for the ATE
 - Sensitivity analysis . . .

Identification: No unmeasured confounding

- Identification
 - Let's begin with most common set of assumptions:
 - 1. **Overlap**/Positivity: $0 < Pr[D_i = 1 | \mathbf{X}_i] < 1$
 - 2. No unmeasured confounding: $\{Y_i(1), Y_i(0)\} \perp D_i \mid X_i$

Identification: No unmeasured confounding

- Identification
 - Let's begin with most common set of assumptions:
 - 1. **Overlap**/Positivity: $0 < Pr[D_i = 1 | \mathbf{X}_i] < 1$
 - 2. No unmeasured confounding: $\{Y_i(1), Y_i(0)\} \perp D_i \mid X_i$
 - This will identify the PATE:

$$\begin{split} \tau &= \mathbb{E} \big[Y_i(1) - Y_i(0) \big] \\ &= \mathbb{E}_{\mathbf{X}} \left\{ E \big[Y_i(1) - Y_i(0) \mid X_i \big] \right\} \quad \text{iter.} \\ &= \mathbb{E}_{\mathbf{X}} \left\{ E \big[Y_i(1) \mid X_i \big] - \mathbb{E} \big[Y_i(0) \mid X_i \big] \right\} \quad \text{it near.} \\ &= \mathbb{E}_{\mathbf{X}} \left\{ E \big[Y_i(1) \mid D_i = 1, X_i \big] - \mathbb{E} \big[Y_i(0) \mid D_i = 0, X_i \big] \right\} \quad \text{in a.c.} \\ &= \mathbb{E}_{\mathbf{X}} \left\{ E \big[Y_i \mid D_i = 1, X_i \big] - \mathbb{E} \big[Y_i \mid D_i = 0, X_i \big] \right\} \quad \text{a.c.} \end{split}$$

Identification: No unmeasured confounding

- Identification
 - Let's begin with most common set of assumptions:
 - 1. **Overlap**/Positivity: $0 < Pr[D_i = 1 | \mathbf{X}_i] < 1$
 - 2. No unmeasured confounding: $\{Y_i(1), Y_i(0)\} \perp D_i \mid X_i$
 - This will identify the PATE:

$$\tau = \mathbb{E}[Y_{i}(1) - Y_{i}(0)]$$

$$= \mathbb{E}_{\mathbf{X}} \{ E[Y_{i}(1) - Y_{i}(0) \mid X_{i}] \}$$

$$= \mathbb{E}_{\mathbf{X}} \{ E[Y_{i}(1) \mid X_{i}] - \mathbb{E}[Y_{i}(0) \mid X_{i}] \}$$

$$= \mathbb{E}_{\mathbf{X}} \{ E[Y_{i}(1) \mid D_{i} = 1, X_{i}] - \mathbb{E}[Y_{i}(0) \mid D_{i} = 0, X_{i}] \}$$

$$= \mathbb{E}_{\mathbf{X}} \{ E[Y_{i} \mid D_{i} = 1, X_{i}] - \mathbb{E}[Y_{i} \mid D_{i} = 0, X_{i}] \}$$

- Estimation
 - Regression
 - Matching/Weighting (Module 7)

Treated and control conditional expectation functions (CEFs):

$$\mu_1(\mathbf{x}) = \mathbb{E}[Y_i(1) \mid \mathbf{X}_i = \mathbf{x}], \qquad \mu_0(\mathbf{x}) = \mathbb{E}[Y_i(0) \mid \mathbf{X}_i = \mathbf{x}]$$

By consistency and no unmeasured confounding:

$$\underbrace{\mu_1(\mathbf{x})}_{\text{counterfactual}} = \underbrace{\mathbb{E}[Y_i \mid D_i = 1, \mathbf{X}_i = \mathbf{x}]}_{\text{observational}}, \qquad \mu_0(\mathbf{x}) = \mathbb{E}[Y_i \mid D_i = 0, \mathbf{X}_i = \mathbf{x}]$$

8

Treated and control conditional expectation functions (CEFs):

$$\mu_1(\mathbf{x}) = \mathbb{E}[Y_i(1) \mid \mathbf{X}_i = \mathbf{x}], - \mu_0(\mathbf{x}) = \mathbb{E}[Y_i(0) \mid \mathbf{X}_i = \mathbf{x}]$$

By consistency and no unmeasured confounding:

$$\underbrace{\mu_1(\mathbf{x})}_{\text{counterfactual}} = \underbrace{\mathbb{E}[Y_i \mid D_i = 1, \mathbf{X}_i = \mathbf{x}]}_{\text{observational}}, \quad \mu_0(\mathbf{x}) = \mathbb{E}[Y_i \mid D_i = 0, \mathbf{X}_i = \mathbf{x}]$$

- Estimate CEFs using regression estimators $\widehat{\mu}_1(\mathbf{x})$ and $\widehat{\mu}_0(\mathbf{x})$.
 - Might be linear or nonlinear models (e.g., GAMs)
 - Regression estimator of the ATE:

$$\widehat{\tau}_{\text{reg}} = \frac{1}{n} \sum_{i=1}^{n} \widehat{\mu}_{1}(\mathbf{X}_{i}) - \widehat{\mu}_{0}(\mathbf{X}_{i})$$

8

$$\widehat{\tau}_{\text{reg}} = \frac{1}{n} \sum_{i=1}^{n} \widehat{\mu}_{1}(\mathbf{X}_{i}) - \widehat{\mu}_{0}(\mathbf{X}_{i})$$

- General procedure:
 - \mathfrak{D}_{\bullet} Obtain predicted values for all units when $D_{i}=1$.
 - **Q** Obtain predicted values for all units when $D_i = 0$.
 - Take the average difference between these predicted values.

$$\widehat{\tau}_{\text{reg}} = \frac{1}{n} \sum_{i=1}^{n} \widehat{\mu}_{1}(\mathbf{X}_{i}) - \widehat{\mu}_{0}(\mathbf{X}_{i})$$

- General procedure:
 - Obtain predicted values for all units when $D_i = 1$.
 - Obtain predicted values for all units when $D_i = 0$.
 - Take the average difference between these predicted values.
- Safest practice:
 - Estimate separate regression in each treatment group.
 - Sometimes called an imputation estimator.
 - Procedure:
 - Regress Y_i on X_i in the treatment group and get predicted values for all units (treated or control).
 - Regress Y_i on X_i in the control group and get predicted values for all units (treated or control).
 - Take the average difference between these predicted values.

Toy example

• Data is as follows and we will use linear regression to estimate CEFs

Imputation estimator visualization

```
M_1 \mod 0 \ll \lim_{x \to \infty} (y-x), data = toy_data, subset = d==0) \iff Control group M_2 \mod 1 \ll \lim_{x \to \infty} (y-x), data = toy_data, subset = d==1) \iff treated
```


mu0.imps = predict(mod0, toy_data); mu1.imps = predict(mod1, toy_data)
cat("Estimate of ATE:", mean(mu1.imps - mu0.imps))

Estimate of ATE: 0.4873975

Fully interacted OLS visualization

- What if $\widehat{\mu}_1(\mathbf{x})$ and $\widehat{\mu}_0(\mathbf{x})$ are from fully interacted OLS with centered covariates?
 - Equivalent to running separate models for $\widehat{\mu}_1(\mathbf{x})$ and $\widehat{\mu}_0(\mathbf{x})$

•
$$\widehat{\tau}_{reg} \equiv$$
 estimated coefficient on D_i

Recall: Under linear models, $\widehat{\tau}_{reg}$ is **sometimes** equivalent to a coefficient.

$$\widehat{M}_{1}(\widehat{X}_{i}) = (\widehat{\alpha} + \widehat{\alpha}) + \widehat{\chi}_{1} (\widehat{\alpha} + \widehat{\alpha})$$

$$\widehat{M}_{0}(\widehat{X}_{i}) = \widehat{\alpha} + \widehat{\chi}_{1} \widehat{A}$$

$$\widehat{M}_{0}(\widehat{X}_{i}) = \widehat{M}_{0}(\widehat{X}_{i}) = \widehat{M}_{0}(\widehat{$$

Fully interacted OLS visualization

- What if $\widehat{\mu}_1(\mathbf{x})$ and $\widehat{\mu}_0(\mathbf{x})$ are from fully interacted OLS with centered covariates?
 - Equivalent to running separate models for $\widehat{\mu}_1(\mathbf{x})$ and $\widehat{\mu}_0(\mathbf{x})$
 - $\widehat{\tau}_{reg} \equiv$ estimated coefficient on D_i
 - Recall: Under linear models, $\widehat{\tau}_{\text{reg}}$ is **sometimes** equivalent to a coefficient.

```
toy_data$x_tilde <- toy_data$x - mean(toy_data$x)</pre>
mod_full <- lm(y\sim d+x_tilde+d*x_tilde, data = toy_data)
dat0 <- toy_data %>% mutate(d = 0); dat1 <- toy_data %>% mutate(d = 1)
mu0.full = predict(mod_full, dat0); mu1.full = predict(mod_full, dat1)
cat("Estimate of ATE (Fully interacted):", mean(mu1.full - mu0.full),
    "\nEstimate of ATE (Imputation):", mean(mul.imps - mu0.imps),
    "\nEstimated coefficient on Di", mod_full$coefficients["d"])
## Estimate of ATE (Fully interacted): 0.4873975
## Estimate of ATE (Imputation): 0.4873975
## Estimated coefficient on Di 0.4873975
```


Uninteracted OLS visualization

- What if $\widehat{\mu}_1(\mathbf{x})$ and $\widehat{\mu}_0(\mathbf{x})$ are from the same OLS model Y ~ D + X?
 - $\widehat{\tau}_{reg} \equiv \text{estimated coefficient on } D_i$

Uninteracted OLS visualization

```
• What if \widehat{\mu}_1(\mathbf{x}) and \widehat{\mu}_0(\mathbf{x}) are from the same OLS model Y ~ D + X?
         • \widehat{\tau}_{reg} \equiv \text{estimated coefficient on } D_i
                                                                         Y= PDi+ XiA+Ei
mod <- lm(y\sim d+x, data = toy_data)
                                                                        A. (X)= 2+ X/3
mu0 = predict(mod, dat0); mu1 = predict(mod, dat1)
                                                                         mo(x)= x.1/2
cat("Estimate of ATE (Uninteracted):", mean(mu1 - mu0),
     "\nEstimated coefficient on Di", mod$coefficients["d"],
     "\nEstimate of ATE (Fully interacted):", mean(mu1.full - mu0.full),
     "\nEstimate of ATE (Imputation):", mean(mul.imps - mu0.imps))
## Estimate of ATE (Uninteracted): 0.479676 \mathcal{E}_{(e)} \stackrel{!}{\leftarrow} \stackrel{!}{\sim} \widehat{\mathcal{M}}_{i}(X_{i}) - \widehat{\mathcal{M}}_{i}(X_{i})
## Estimated coefficient on Di 0.479676
## Estimate of ATE (Fully interacted): 0.4873975
                                                                  =\frac{1}{n}\cdot n\hat{\sim}=\hat{\sim}
## Estimate of ATE (Imputation): 0.4873975
```


Variance estimation

• How do we get estimates of the variance of $\widehat{ au}_{\text{reg}}$?

Variance estimation

- How do we get estimates of the variance of $\widehat{\tau}_{reg}$?
- Nonparametric bootstrap
 - Recall: Source of variance is due to sampling
 - Idea: View sample (data) as "population" → in-sample "sampling"

Variance estimation

- How do we get estimates of the variance of $\widehat{\tau}_{reg}$?
- Nonparametric bootstrap
 - Recall: Source of variance is due to sampling
 - Idea: View sample (data) as "population" → in-sample "sampling"
- Procedure:
 - Randomly resample n rows of the data with replacement
 - Refit the regressions on the bootstrapped data.
 - Calculate $\widehat{\tau}_{reg}$ in each bootstrap
 - Repeat several times and use empirical variance of the bootstraps

Bootstrap sample codes

```
set.seed(02138); sims<-500; tau_hat_draws<-rep(NA, sims)</pre>
for (i in 1:sims) { # Repeat the following several times
  # 1. Randomly resample n rows of the data with replacement
  sample_boot <- dplyr::slice_sample(toy_data, n = nrow(toy_data),</pre>
                                    replace = TRUE
  # 2. Refit the regressions on the bootstrapped data
  model \leftarrow lm(y \sim d + x_tilde + d*x_tilde, data = toy_data)
  dat1 <- sample_boot; dat1$d <- 1</pre>
  dat0 <- sample_boot; dat0$d <- 0</pre>
  mul_hat <- predict(model, newdata = dat1)</pre>
  mu0_hat <- predict(model, newdata = dat0)</pre>
  # 3. Calculate tau_hat in each bootstrap
  tau_hat_draws[i] <- mean(mul_hat - mu0_hat)</pre>
}
# 4. Use empirical variance of the bootstraps
var(tau_hat_draws)
   [1] 0.0003247686
```

DAG

- How do we know if no unmeasured confounders holds?
 - One way: use DAGs and look at back-door paths.

DAG

- How do we know if no unmeasured confounders holds?
 - One way: use DAGs and look at back-door paths.

D-separation

- Can we determine conditional independence from our causal DAG?
- Yes! To verify that $A \perp\!\!\!\perp B \mid C$ where each is a set of nodes:
 - 1. Find all paths between A and B.
 - 2. Check if each path is blocked.
 - 3. If all paths are blocked, then A is **d-separated** from B by C

DAG

- How do we know if no unmeasured confounders holds?
 - One way: use DAGs and look at back-door paths.

D-separation

- Can we determine conditional independence from our causal DAG?
- Yes! To verify that $A \perp\!\!\!\perp B \mid C$ where each is a set of nodes:
 - Find all paths between A and B.
 Check if each path is blocked.

 - 3. If all paths are blocked, then A is **d-separated** from B by C

- If C observed → collider bias
- e.g., A=bicycle accident, B=stomachache, C=hospitalization; Sackett (1979)