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Overview

e Logistics:
¢ No pset this week!

e Today's topics:
1. Review session
2. No unmeasured confounding + regression



What we have learned so far?

o Fisher's approach to inference: randomization inference

e Neyman'’s approach to inference for the ATE: diff-in-means
estimator
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What we have learned so far?

Fisher's approach to inference: randomization inference

Neyman's approach to inference for the ATE: diff-in-means
estimator

Analyzing experiments with regression
e Simple OLS estimator + robust variance estimator
e + Covariates
e + Block design
e + Cluster design

This week: observational studies
o Before we move on, let's quickly review experimental designs!



Experimental design

e Types of experiments by their assignment mechanism

o Bernoulli randomization: Each unit is assigned D; = 1 with prob.
p independently (coin flips)

o Completely randomized experiment: Randomly sample n; units
from the population to be treated

o Block/stratified randomized experiment: Completely
randomized experiment in each block ~ always efficient for PATE

o Cluster randomized experiment: Treatment assignment at a
higher level ~ allows for interference within clusters



Experimental design

e Types of experiments by their assignment mechanism
o Bernoulli randomization: Each unit is assigned D; = 1 with prob.

p independently (coin flips)

o Completely randomized experiment: Randomly sample n; units

from the population to be treated

o Block/stratified randomized experiment: Completely

randomized experiment in each block ~ always efficient for PATE

o Cluster randomized experiment: Treatment assignment at a

higher level ~ allows for interference within clusters

o Exercise: comparing experimental designs through simulation

1.

S Ol R WIS

Assume true potential outcomes

Select one assignment mechanism

Randomly generate treatment assignment
Estimate SATE (using diff-in-means estimator)
Repeat 3-4 multiple times

Draw a distribution of estimates



Experimental design

e Setup:
o SATE=L1 3% 7,=85
o Design is balanced (except for Bernoulli)

Unit | Y;(0) Yi(1) 7 Block/Cluster
1 0 1 1 A
2 0 2 2 A
3 0 3 3 A
4 0 4 4 A
5 0 5 5 B
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Experimental design

e Setup:
o SATE=L1 3% 7,=85

o Design is balanced (except for Bernoulli)

Unit | Y;(0) Yi(1) 7 Block/Cluster
1 0 1 1 A
2 0 2 2 A
3 0 3 3 A
4 0 4 4 A
5 0 5 5 B
16 0 16 16 D

e Q: Which design would have the largest (smallest) variance?

e Check the results here: https:

//twitter.com/aecoppock/status/14425452544234864657s=21



Observational studies

e Problem:
e Non-randomized treatment

o ~{Yi(1),Yi(0)} L D,
e ~ selection bias = unidentified ATT

E[Yi|D; =1] - E[Yi|D; = 0] = 7 +E[Y:(0)|D; = 1] -E[Yi(0)|D; = 0]

diff-in-means 1 ATT selection bias
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Observational studies

e Problem:
e Non-randomized treatment

o ~{Yi(1),Yi(0)} L D,
e ~ selection bias = unidentified ATT

E[Yi|D; =1] - E[Yi|D; = 0] = 7 +E[Y:(0)|D; = 1] -E[Yi(0)|D; = 0]

diff-in-means ATT selection bias

e What can we do for the identification?
e Assume no unmeasured confounding with positivity
o Partial identification: analysis of bounds for the ATE
e Sensitivity analysis ...



Identification: No unmeasured confounding

e |dentification
e Let's begin with most common set of assumptions:
1. Overlap/Positivity: 0 < Pr[D; =1|X;] <1
2. No unmeasured confounding: {Y;(1), Yi(0)} L D; | X;
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Identification: No unmeasured confounding

o |dentification

e Let's begin with most common set of assumptions:
1. Overlap/Positivity: 0 < Pr[D; =1|X;] <1
2. No unmeasured confounding: {Y;(1), Yi(0)} L D; | X;

e This will identify the PATE:

7=E[Yi(1) - Y;(0)]
=Ex {E[Yi(1) - Yi(0) | X;]} ior.
=Ex {E[Yi(1) | Xi] —E[Y;(0) | X;]} lrnear. NE
=Ex {E[Yi(1) | D; =1, X;] -E[Yi(0) | D; =0, X;]}
=Ex{E[Y;| Di=1,X:]-E[Y; | Di=0,X;]} &/ comsistency.



Identification: No unmeasured confounding

o |dentification

e Let's begin with most common set of assumptions:
1. Overlap/Positivity: 0 < Pr[D; =1|X;] <1
2. No unmeasured confounding: {Y;(1), Yi(0)} L D; | X;

e This will identify the PATE:

T=E[Yi(1) - Yi(0)]
= Ex {E[Yi(1) - Yi(0) [ Xi]}
=Ex {E[Yi(1) | Xi] -E[Yi(0) | Xi]}
=Ex {E[Y;(1) | D; = 1,X] - E[Y;(0) | D; = 0, X;]}
=Ex {E[Y;| D;=1,X]-E[Y;| D; = 0,X]}

e Estimation
o Regression
o Matching/Weighting (Module 7)



Estimation: Regression-based estimators

o Treated and control conditional expectation functions (CEFs):

pa(x) =E[Y;(1) [X;=x],  po(x) = E[Y;(0) [ X; =x]

e By consistency and no unmeasured confounding:

pm(x)  =E[Y;[D;=1,X;=x],  po(x)=E[Y;[D;=0,X;=x]
—
counterfactual observational




Estimation: Regression-based estimators

o Treated and control conditional expectation functions (CEFs):

p(x) =E[Yi(1) [ X; =x], — po(x) =E[Y;(0) | X; =x]
AN

e By consistency and nolmmeasured confounding: I

pi(x)  =E[Y;[Dj=1,X;=x], — po(x)=E[Y;|D;=0,X;=x]
—
counterfactual observational

o Estimate CEFs using regression estimators 771 (x) and 7ip(x).

e Might be linear or nonlinear models (e.g., GAMs)
e ~ Regression estimator of the ATE:
A~~~

- 1S4 -
Treg = Yo (Xi) = o (X))
i=1



Estimation: Regression-based estimators

~ 14 —~
Treg = E ZMI(Xi) - NO(Xi)
i=1

e General procedure:
De Obtain predicted values for all units when D; = 1.
@. Obtain predicted values for all units when D; = 0.
o Take the average difference between these predicted values.
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Estimation: Regression-based estimators

~ 14 —~
Treg = E ZMI(Xi) - NO(Xi)
i=1

e General procedure:
e Obtain predicted values for all units when D; = 1.
e Obtain predicted values for all units when D; = 0.
o Take the average difference between these predicted values.

e Safest practice:
o Estimate separate regression in each treatment group.
e Sometimes called an imputation estimator.
e Procedure:
e Regress Y; on X; in the treatment group and get predicted values
for all units (treated or control).
e Regress Y; on X; in the control group and get predicted values for
all units (treated or control).
o Take the average difference between these predicted values.



Toy example

e Data is as follows and we will use linear regression to estimate CEFs
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Imputation estimator visualization viLd | K
NN,

A
M modd <- lm(y~x, data = toy data, subset = d==0)< Contvro ( 4
/‘/k,modl <- lm(y~x, data = toy_data, subset = d==1)<& -reated

® Treated
A Control

1.0
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mu@.imps = predict(mod®, toy_data); mul.imps = predict(modl, toy_data)
cat("Estimate of ATE:", mean(mul.imps - mu®.imps))

## Estimate of ATE: 0.4873975

® Treated
A Control
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Fully interacted OLS visualization

o What if 7i1(x) and Zip(x) are from fully interacted OLS with
centered covariates?

e Equivalent to running separate models for 7i1(x) and 7ip(x)
o T,eg = estimated coefficient on D;

o Recall: Under linear models, Tz is sometimes equivalent to a
coefficient.
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Fully interacted OLS visualization
o What if 7i1(x) and Zip(x) are from fully interacted OLS with
centered covariates?
e Equivalent to running separate models for 7i1(x) and 7ip(x)
o T,eg = estimated coefficient on D;

o Recall: Under linear models, iz is sometimes equivalent to a
coefficient.

toy_data$x _tilde <- toy_data$x - mean(toy_data$x)

mod_full <- lm(y~d+x_tilde+d*x_tilde, data = toy_data)

datd <- toy_data %>% mutate(d = 0); datl <- toy_data %>% mutate(d = 1)

mu@.full = predict(mod_full, dat®); mul.full = predict(mod_full, datl)

cat("Estimate of ATE (Fully interacted):", mean(mul.full - mu@.full),
"\nEstimate of ATE (Imputation):", mean(mul.imps - mu@.imps),

"\nEstimated coefficient on Di", mod_full$coefficients["d"])

## Estimate of ATE (Fully interacted): 0.4873975
## Estimate of ATE (Imputation): 0.4873975
## Estimated coefficient on Di 0.4873975
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® Treated
A Control

x_tilde
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Uninteracted OLS visualization

o What if 771(x) and 7ip(x) are from the same OLS model Y ~ b + Xx?
® Teg = estimated coefficient on D;

15



Uninteracted OLS visualization

o What if i1 (x) and Zig(x) are from the same OLS model Y ~ D + X?
NN

o T,g = estimated coefficient on D; '
o =Rt Xih+ea
A~ = N
MW= TrREH
mu@ = predict(mod, dat@); mul = predict(mod, datl
predict! ) predict( Y R X
cat("Estimate of ATE (Uninteracted):", mean(mul - mu@),

"\nEstimated coefficient on Di", mod$coefficients["d"],

mod <- lm(y~d+x, data = toy_data)

"\nEstimate of ATE (Fully interacted):", mean(mul.full - mu@.full),

"\nEstimate of ATE (Imputation):", mean(mul.imps - mu@.imps))

## Estimate of ATE (Uninteracted): 0.479676 ’Uleg" TE/G‘U(") "“‘"“‘J
## Estimated coefficient on Di 0.479676 \I ’C

## Estimate of ATE (Fully interacted): 0.4873975 N

## Estimate of ATE (Imputation): 0.4873975 ’l&

l

\
‘(‘?>’|"

15



® Treated
A Control
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Variance estimation

e How do we get estimates of the variance of Treg?

17



Variance estimation

e How do we get estimates of the variance of Treg?

¢ Nonparametric bootstrap
e Recall: Source of variance is due to sampling
o |dea: View sample (data) as “population” — in-sample “sampling”
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Variance estimation

e How do we get estimates of the variance of Treg?

¢ Nonparametric bootstrap
e Recall: Source of variance is due to sampling
o |dea: View sample (data) as “population” — in-sample “sampling”

e Procedure:
e Randomly resample n rows of the data with replacement
o Refit the regressions on the bootstrapped data.
o Calculate Teg in each bootstrap
o Repeat several times and use empirical variance of the bootstraps

17



Bootstrap sample codes
set.seed(02138); sims<-500; tau_hat_draws<-rep(NA, sims)

for (i in 1l:sims) { # Repeat the following several times
# 1. Randomly resample n rows of the data with replacement
sample_boot <- dplyr::slice_sample(toy_data, n = nrow(toy_data),
replace = TRUE)
# 2. Refit the regressions on the bootstrapped data
model <- lm(y ~ d + x_tilde + d+*x_tilde, data = toy_data)
datl <- sample_boot; datl$d <- 1
dat0 <- sample_boot; dat0$d <- 0
mul_hat <- predict(model, newdata = datl)
mu@_hat <- predict(model, newdata = dat0)
# 3. Calculate tau_hat in each bootstrap
tau_hat_draws[i] <- mean(mul_hat - mu@_hat)
}
# 4. Use empirical variance of the bootstraps
var(tau_hat_draws)

## [1] 0.0003247686
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DAG

e How do we know if no unmeasured confounders holds?
e One way: use DAGs and look at back-door paths.
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DAG

e How do we know if no unmeasured confounders holds?
e One way: use DAGs and look at back-door paths.

e D-separation
e Can we determine conditional independence from our causal DAG?

e Yes!
1.
2.
3.

To verify that A 1L B | C where each is a set of nodes:
Find all paths between A and B.

Check if each path is blocked.

If all paths are blocked, then A is d-separated from B by C

19
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e How do we know if no unmeasured confounders holds?
e One way: use DAGs and look at back-door paths.

e D-separation DE

e Can we determine conditional independence from our causal DAG?
o Yes! To verify that A 1L B | C where each is a set of nodes:

1. Find all paths between A and B. ww&"“"’"

2. Check if each path is blocked.” *

3. If all paths are blocked, then A is d-separated from B by C

[ J
s , C is observed (conditioned) D (|
2 AECTE & B C is observed "
w&,/gA\(a-C - B, C is observed U
4 AsCeB, @ls not observed MB |C

o If C observed ~collider bias

e e.g., A=bicycle accident,B=stomachache, C=hospitalization;
Sackett (1979)
~T T  ——
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