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Overview

● Logistics:● Pset 3 released! Due at 11:59 pm (ET) on Sept 29

● Today’s topics:

1. Neyman’s approach to completely randomized experiments

2. Derivation of finite-sample sampling variance

3. A short review of blocked design
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Neyman’s approach to completely

randomized experiments
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Fisher and Neyman

● Design-based inference:● Fisher: treatments assigned randomly● Neyman: treatments assigned randomly + n samples chosen

randomly from a superpopulation

● Fisher: permutation test with sharp null hypothesis● Fill in all values of the missing potential outcomes● Derive the exact randomization distribution of statistics● Limitations:● Does not allow heterogeneous treatment e�ects● Does not allow population-level inference

● Neyman: di�erence-in-means as an estimator of the ATE● Inference relies on asymptotic approximation● Obtain unbiased estimator (·̂)● Construct an interval estimator for the causal estimand● � unbiased/conservative estimator (V̂(·̂)) for the sampling
variance of the estimator (V(·̂))
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Estimands and di�erence-in-means estimator

● n samples chosen randomly from a superpopulation● Sample Average Treatment E�ect:

SATE = 1

n
n�

i=1[Yi(1) −Yi(0)] = ·fs

● Population Average Treatment E�ect:

PATE = E[Yi(1) −Yi(0)] = ·

● Di�erence-in-means estimator:

·̂di� = 1

n1

n�
i=1 DiYi − 1

n0

n�
i=1(1 −Di)Yi
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Di�erence-in-means: Analytical results

● Di�erence-in-means estimator:

·̂di� = 1

n1

n�
i=1 DiYi − 1

n0

n�
i=1(1 −Di)Yi

● Bias of the DiM estimator:● ·̂di� unbiased for SATE:

ED[·̂di��O] = ·fs

● � See lecture slides p.9 for derivation● ·̂di� unbiased for PATE:

E[·̂di�] = E[ED[·̂di��O]] = E[·fs] = ·
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Di�erence-in-means: Analytical results

● Di�erence-in-means estimator:

·̂di� = 1

n1

n�
i=1 DiYi − 1

n0

n�
i=1(1 −Di)Yi

● Sampling variance of the DiM estimator:

● At finite-sample level:

VD(·̂di� � O) = S2
0

n0
+ S2

1
n1
− S2

·i

n ,

● S2
0 and S2

1 are the in-sample variances of Yi(0) and Yi(1),
respectively. Last term is the in-sample variation of the individual
treatment e�ects.● Will derive this shortly.● None of these are directly observable!● Also, can rewrite this as:

VD(·̂di� � O) = 1
n �n1

n0
S2

0 + n0
n1

S2
1 + 2S01�

7

SoI hit¥ (Yih)
- YTODZ

si-n-T-ZCY-iu-Y-yfycot-n-EY-r.co)

4-a)= I%Yall)

II. =É E Him-¥101
- Tfs)

2

why unidentifiable I FPOCI)

so, = ÷, -2,14=07-4-451
{42101-4-101}(



Di�erence-in-means: Analytical results

● Di�erence-in-means estimator:

·̂di� = 1

n1

n�
i=1 DiYi − 1

n0

n�
i=1(1 −Di)Yi

● Sampling variance of the DiM estimator:

● At population level:

V(·̂di�) = ‡2
0

n0
+ ‡2

1
n1

● ‡2
0 and ‡2

1 are the population-level variances of Yi(1) and Yi(0),
respectively.● Will derive this in pset 3.● None of these are directly observable! � obtain an estimator for this

8



Di�erence-in-means: Analytical results

● Usual variance estimator is Neyman (or robust) estimator:

V̂ = ‡̂2
0

n0
+ ‡̂2

1
n1

● ‡̂2
d are the sample variances within each group d ∈ {0, 1}.

‡̂2
d = 1

nd − 1

n�
i=1

I{Di = d} �Yi −Y d�2

● E �V̂ � O� = S2
1

n1
+ S2

0
n0

and E �V̂� = E �E �V̂ � O�� = ‡2
1

n1
+ ‡2

0
n0● Estimating sampling variance:● At finite-sample level: Neyman estimator is conservative on average

VD(·̂di� � O) ≤ S2
1

n1
+ S2

0
n0
= E �V̂ � O�

● At population level: Neyman estimator is unbiased

V(·̂di�) = ‡2
0

n0
+ ‡2

1
n1
= E �V̂�
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Di�erence-in-means: Analytical results

● Recap● Di�erence-in-means estimator (·̂di�)

● Bias of the DiM estimator● unbiased for both SATE (= ·fs) and PATE (= ·)
● Sampling variance of the DiM estimator● � unobservable for both finite-sample (VD(·̂di� � O))● and population level (V(·̂di�))
● Introduce Neyman (or robust) estimator● Conservative for finite-sample sampling variance● Unbiased for population sampling variance
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Derivation of finite-sample sampling variance
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A short review of blocked design

● Setup:● Group units into J blocks; randomize treatment within each block● Apply Neyman’s analysis to each block j = 1, . . . , J● Use weighted average of block estimates and variances, with weights

wj = nj�n
● Motivation: gain in e�ciency● Unbiasedness still holds:

E[·̂block�O] = E[·̂ �O] = SATE.

● Lower population sampling variance: V(·̂) ≥ Vblock(·̂block)
● Example: Student Teacher Achievement Ratio (STAR) project● Analyze the relationship between kindergarten class size and student

achievement.● Within each school, classes were randomized into small (13-17

students) or regular-size (22-25 students).
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