Section 1

Introduction and Potential Outcomes

Sooahn Shin

GOV 2003

Sept 9, 2021

Overview

• Logistics:

- Section: Thur 3:00 4:15 pm @ K262
- TF Office Hours: Mon 1:30 2:30/Thur 4:30 5:30 pm @ TBD
- Pset 1 released! Due at 11:59 pm (ET) on Sept 15
- We encourage you to share your questions on Ed.
- By September 17: Find a collaborator for the project (check the open thread for finding partners on Ed).

Today's topics:

- 1. Identification and estimation
- 2. Example: Political canvassing

Identification and Estimation

• The fundamental problem of causal inference (Holland 1986)

- We only observe one potential outcome per unit
 How do we infer the missing potential outcomes (= counterfactual)?
- Identification (*definition* of causal effects)
 - Assumptions for defining effects: e.g., SUTVA
 - Estimands (= Quantity of Interest): e.g., Sample Average Treatment Effect (SATE)
- Estimation (learning from observed outcomes)

Example: Political canvassing¹

- Study of *n* voters
 - n₁ are canvassed
 - $n_0 = n n_1$ are not canvassed
- For each voter $i \in \{1, 2, \ldots, n\}$, observe:
 - Vote choice (observed outcome): $Y_i = 1$ if voter *i* cast ballot for candidate *A*, and 0 if the voter cast ballot for candidate *B*.
 - Turnout (observed selection): $S_i = 1$ if voter *i* turned out, and 0 otherwise.
 - Canvassing (treatment): $D_i = 1$ if canvassed, and 0 otherwise.
- Causal question: does canvassing (D_i) affect vote choice (Y_i)?
- Selection on samples:
 - 1. canvassing may affect turnout (S_i) , and
 - 2. we only observe the vote choices of the voters who turned out \rightsquigarrow post-treatment bias

¹Example adapted from 2021S STAT286/GOV2003 Review Question 1

Potential Outcomes and Principal Stratification

- 1. $D_i \rightarrow S_i$
 - S_i: **Observed** turnout
- $S_i(d)$ for $d \in \{0,1\}$: **Potential** turnout
 - Recall the "consistency" assumption: S_i = S_i(d) if D_i = d (no hidden versions of treatment)
 - If canvassed [D_i = d], the potential turnout when the voter is canvassed [S_i(d)] is the observed turnout [S_i]
- We have four principal strata defined by $(S_i(0), S_i(1))$
 - (1,1): turning out regardless of the canvassing
 - (0,1): turning out only when being canvassed
 - (1,0): turning out only when not being canvassed
 - (0,0): never turning out

Potential Outcomes and Principal Stratification

- 2. Vote choice does not exist if a voter i does not turn out
 - Y_i: **Observed** vote choice
 - $Y_i(d,s)$ for $d, s \in \{0,1\}$: **Potential** vote choice
 - $Y_i(1,0)$ and $Y_i(0,0)$ are not well defined
 - Y_i(1,0): Potential vote choice if the voter is canvassed and didn't turn out → does not exist
 - Y_i(0,0): Potential vote choice if the voter is not canvassed and didn't turn out → does not exist

Estimands

- Suppose effect of interest is the effect among those who turn out regardless of the treatment.
- What is the individual causal effect of canvassing on voting for candidate A among always turnout?

$$Y_i(1,1) - Y_i(0,1)$$

• What is the **population average treatment effect** of canvassing on voting for candidate A among always turnout?

 $\mathbb{E}[Y_i(1,1) - Y_i(0,1) \mid (S_i(0), S_i(1)) = (1,1)]$

Estimands

- Vote share for candidate $A = \frac{\text{Number of votes for } A}{\text{Number of those who turn out}}$
- What is the group-level causal effect of canvassing on candidate A's vote share (among *n* voters in the study)?

$$Z(1) - Z(0)$$
 where $Z(t) = \frac{\sum_{i=1}^{n} Y_i(t)S_i(t)}{\sum_{i=1}^{n} S_i(t)}$ for $t \in \{0, 1\}$