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Overview

● Logistics:● No problem set!● November 19th: Submit a brief (no longer than 5 page) page
memo of your main results, including tables, figures, and brief
analysis. For methodological projects, this should include a
description of the method and any analytical/simulation results.
You will be required to give feedback on another group’s project,
which will be counted toward the overall grade based on
attentiveness and usefulness of the feedback provided.

● Today’s topics:● Di�erence-in-Di�erences design

2



Motivation

● What if we have repeated measurements of the same units before
and after the treatment?

-2

-1

0

1

2
O

ut
co

m
e

Before treatment After treatment

Treated group

Control group

● Setup: two groups (binary Gi), two time periods (binary t)● Yit(d) is the potential outcome under treatment d at time t.● Estimand: ·ATT = E[Yi1(1) −Yi1(0)�Gi = 1]
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Identification problem

● Identifying counterfactual E[Yi1(0) � Gi = 1]

1. Cross sectional variation: At time t = 1 (post-period), some
units received the treatment (Gi = 1) while others didn’t (Gi = 0).
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Identification problem

● Identifying counterfactual E[Yi1(0) � Gi = 1]

-2

-1

0

1

2
O

ut
co

m
e

Before treatment After treatment

Treated group

Control group

Before/After

2. Over time variation: A unit (i) in the treated group didn’t
receive the treatment at time t = 0 (pre-period).
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DiD Identification

● Identifying counterfactual E[Yi1(0) � Gi = 1]
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● Key assumption: parallel trends (PT)
E[Yi1(0) −Yi0(0)�Gi = 0] = E[Yi1(0) −Yi0(0)�Gi = 1]
·ATT = (E[Yi1�Gi = 1]−E[Yi0�Gi = 1])−(E[Yi1�Gi = 0]−E[Yi0�Gi = 0])
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Example

● Bechtel, Hangartner, and Schmid (2015)● The e�ect of compulsory voting on support for leftist policies?● Starting with the election of 1925, one Swiss canton (Vaud)
introduced compulsory voting for its districts

● Data:
● Outcome: Support for left-wing platforms at the district level

(smaller than cantons)● Treatment: Compulsory voting● Two groups: District belongs to Vaud or not● Two time periods: 1924 (pre-period) and 1925 (post-period)

● Strategy: Compare voters’ support for left-wing platforms across
districts in Vaud vs. other cantons (which had no voting change
policies), before and after the compulsory voting rule

● Q: What does parallel trends assumption imply in this context?
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Estimation

# Simple DiD

dat <- swiss.wide %>%

mutate(trend = support_left_1925 - support_left_1924)

n1 = sum(dat$treated); n0 = sum(1-dat$treated)

did_estimate <- mean(dat$trend[dat$treated==1]) -

mean(dat$trend[dat$treated==0])

did_estimate

## [1] 0.1551693

# Regression implementation

library(estimatr)

lm_est = lm_robust(trend ~ treated, data = dat, se_type = "HC2")

cat(lm_est$coefficients[2], lm_est$std.error[2])

## 0.1551693 0.02876936
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Linear two-way fixed e�ects model

● Alternatively,
Yit = – + “Gi + —t + ·Dit + Áit

● PT assumption: E[Yi1(0) −Yi0(0)�Gi = g] = — for g = 0, 1
● Or equivalently, E[Ái1 − Ái0�Gi = g] = 0

● E[Yi1(1) � Gi = 1]−E[Yi1(0) � Gi = 1] = (–+“+—+·)−(–+“+—) = ·� DiD estimation
● Only holds for the 2 group, 2 period case
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Linear two-way fixed e�ects model

# Two-way fixed effect regression

library(fixest)

twfe_est = feols(support_left ~ treated:post|district_id + year, swiss)

summary(twfe_est, cluster = "district_id")

## OLS estimation, Dep. Var.: support_left

## Observations: 206

## Fixed-effects: district_id: 103, year: 2

## Standard-errors: Clustered (district_id)

## Estimate Std. Error t value Pr(>|t|)

## treated:post 0.155169 0.028521 5.44055 3.6628e-07 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## RMSE: 0.077775 Adj. R2: 0.568304

## Within R2: 0.130209
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Falsification test: Check pre-treatment trends
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Weighted DiD

● Standard DiD: unconditional parallel trends.

● This assumption may not be plausible – what if groups are
unbalanced on characteristics that are associated with outcome?

● Alternative identification: conditional parallel trends

E[Yi1(0) −Yi0(0) � Gi = 1, Xi] = E[Yi1(0) −Yi0(0) � Gi = 0, Xi]

● Abadie (2015) derives weighting estimators
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Weighted DiD: Estimation

● Weighted DiD estimator is similar to the IPW estimator for ATT

·̂w = 1
n1

n�
i=1�Gi(Yi1 −Yi0) − fi(Xi)(1 −Gi)(Yi1 −Yi0)

1 − fi(Xi) �
● Review: Bonus Q2 of Pset7● Here fi(Xi) = Pr(Gi = 1 � Xi) is the propensity score

● Intuition: Weighting control observations such that● 1 − fi(Xi) is high � overrepresented in the control � downweight● fi(Xi) is high � looks like treated group � upweight

● In practice, replace fi(Xi) with its estimate fî(Xi)
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Weighted DiD: Example
# Estimate propensity score

swiss.wide$prop.score <- glm(treated ~ turnout * prop_kath +

prop_sector1 + prop_sector2, data = swiss.wide, family = "binomial")$fitted

# Estimate ATT

weighted_did_fun <- function(dat, indices = NULL) {

if (is.null(indices)) indices <- 1:nrow(dat)

dat <- dat[indices,]; n <- nrow(dat); n1 <- sum(dat$treated)

Y10 <- with(dat, support_left_1925 - support_left_1924);

Gi <- dat$treated

weights <- with(dat,

ifelse(treated==1, 1, prop.score / (1 - prop.score)))

weighted_did <- sum(Gi * Y10 - weights * (1 - Gi) * Y10) / n1

attr(weighted_did, 'weights') <- weights; return(weighted_did)

}

set.seed(1234)

weighted_did_boot <- boot::boot(swiss.wide, weighted_did_fun, R = 200)

weighted_did_att <- weighted_did_boot$t0

weighted_did_se <- sd(weighted_did_boot$t)

cat(weighted_did_att, weighted_did_se)

## 0.1395537 0.06657771
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Distribution of Weights
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Weighted DiD: Pre-Treatment Trends

● Treated: Y t,treated = ∑n
i=1 GiYit�n1● Control: Y t,control = ∑n
i=1(1 −Gi)wiYit�n1
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Other strategies

● Linear one way fixed e�ects generalizing the before/after design
● Identification under strict exogeneity (no feedback!) + Estimation

via:● within estimator● first di�erences● least squares dummy variable● Identification under sequential ignorability + Estimation via IV
(Arellano-Bond method)

● Di�erence-in-Di�erences extensions● PT assumption of standard DiD not invariant to a nonlinear
transformation of outcome (e.g., log)● � Nonlinear DiD using quantile treatment e�ect (Athey and Imbens
2006)● Inappropriate for the ordinal outcome● � Assumption on the quantile of the latent continuous variable
(Yamauchi 2021+)
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Other strategies

● Matching methods for panel data (Imai, Kim and Wang 2019;
panelmatch)● Choose the number of lags L and leads F● ATE of policy change for the treated

E[Yi,t+F (Dit = 1, Di,t−1 = 0,{Di,t−l}L
l=2)−

Yi,t+F (Dit = 0, Di,t−1 = 0,{Di,t−l}L
l=2) � Dit = 1, Di,t−1 = 0]

● Estimation: construct a matched set for each treated unit that
consists of control units with the identical treatment history up to L
time periods

● Synthetic Control Method (next class)

18



Other strategies

● Matching methods for panel data (Imai, Kim and Wang 2019;
panelmatch)● Choose the number of lags L and leads F● ATE of policy change for the treated

E[Yi,t+F (Dit = 1, Di,t−1 = 0,{Di,t−l}L
l=2)−

Yi,t+F (Dit = 0, Di,t−1 = 0,{Di,t−l}L
l=2) � Dit = 1, Di,t−1 = 0]

● Estimation: construct a matched set for each treated unit that
consists of control units with the identical treatment history up to L
time periods

● Synthetic Control Method (next class)

18



Other strategies

● Matching methods for panel data (Imai, Kim and Wang 2019;
panelmatch)● Choose the number of lags L and leads F● ATE of policy change for the treated

E[Yi,t+F (Dit = 1, Di,t−1 = 0,{Di,t−l}L
l=2)−

Yi,t+F (Dit = 0, Di,t−1 = 0,{Di,t−l}L
l=2) � Dit = 1, Di,t−1 = 0]

● Estimation: construct a matched set for each treated unit that
consists of control units with the identical treatment history up to L
time periods

● Synthetic Control Method (next class)

18


