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Where are we? Where are we going?

• Where we have found good controls:

• Units randomized to receive control
• Units with similar values of covariates
• Units with opposite value of some instrument
• At a discontinuity in treatment assignment

• What if we have repeated measurements of the same units?

• Now there are two possible sources of variation to exploit:

• Exploit cross-sectional variation in treatment.
• Exploit variation in treatment within a unit over time (before/after)
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Cross-sectional vs before/after
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1/ Difference in
differences



Minimum wages (Card & Krueger, 1994)

• Does increasing the minimum wage affect employment?

• Classical economic theory tends to point to negative effects.

• But difficult to randomize changes to the minimum wage.

• In 1992, NJ minimum wage increased from $4.25 to $5.05

• Neighboring PA stays at $4.25
• We observe employment in both states before and after increase

• Look at eastern PA and NJ fast food restaurants.

• Similar prices, wages, products, etc.
• Most likely to be affected by the change.
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Differences-in-differences design
• Basic setup: two groups, two time periods.

• Pre-period (𝘵 = 𝟢): neither group is treated.
• Post-period (𝘵 = 𝟣): one group is treated, other remains untreated.

• Groups defined by treatment status in post-period:

• 𝘎𝘪 = 𝟣 are those that are treated at 𝘵 = 𝟣
• 𝘎𝘪 = 𝟢 for those that are always untreated

• Treatment status in each period:

• No treatment in the first period for either group: 𝘋𝘪𝟢 = 𝟢
• In treated group, 𝘎𝘪 = 𝟣⇝ 𝘋𝘪𝟣 = 𝟣
• In control group, 𝘎𝘪 = 𝟢⇝ 𝘋𝘪𝟣 = 𝟢

Time period
Pre-period (𝘵 = 𝟢) Post-period (𝘵 = 𝟣)

Control group (𝘎𝘪 = 𝟢) 𝘋𝘪𝟢 = 𝟢 𝘋𝘪𝟣 = 𝟢
Treated group (𝘎𝘪 = 𝟣) 𝘋𝘪𝟢 = 𝟢 𝘋𝘪𝟣 = 𝟣
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Potential outcomes approach to DID

• 𝘠𝘪 𝘵(𝘥) is the potential outcome under treatment 𝘥 at time 𝘵 .

• Again, the individual causal effect is just 𝘠𝘪 𝘵(𝟣) − 𝘠𝘪 𝘵(𝟢).

• Consistency: 𝘠𝘪 𝘵 = 𝘋𝘪 𝘵𝘠𝘪 𝘵(𝟣) + (𝟣 − 𝘋𝘪 𝘵)𝘠𝘪 𝘵(𝟢)

• Observe control p.o. for all units in first period: 𝘠𝘪𝟢(𝟢) = 𝘠𝘪𝟢
• In treated group: 𝘎𝘪 = 𝟣⇝ 𝘠𝘪𝟣 = 𝘠𝘪𝟣(𝟣)
• In control group: 𝘎𝘪 = 𝟢⇝ 𝘠𝘪𝟣 = 𝘠𝘪𝟣(𝟢)
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Identification problem

• Average treatment effect on the treated:

𝜏𝘈𝘛𝘛 = 𝔼[𝘠𝘪𝟣(𝟣) − 𝘠𝘪𝟣(𝟢)|𝘎𝘪 = 𝟣]
= 𝔼[𝘠𝘪𝟣(𝟣)|𝘎𝘪 = 𝟣] − 𝔼[𝘠𝘪𝟣(𝟢)|𝘎𝘪 = 𝟣]
= 𝔼[𝘠𝘪𝟣|𝘎𝘪 = 𝟣]⏟⏟⏟⏟⏟

(a)

− 𝔼[𝘠𝘪𝟣(𝟢)|𝘎𝘪 = 𝟣]⏟⏟⏟⏟⏟⏟⏟
(b)

• Part (a) is just a conditional average of observed data⇝ identified.

• Part (b) is a counterfactual: what would the average outcome in the
treated group have been if it have been in control?
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Three control strategies

𝜏𝘈𝘛𝘛 = 𝔼[𝘠𝘪𝟣(𝟣)|𝘎𝘪 = 𝟣] − 𝔼[𝘠𝘪𝟣(𝟢)|𝘎𝘪 = 𝟣]

Time period
Pre-period (𝘵 = 𝟢) Post-period (𝘵 = 𝟣)

Control group (𝘎𝘪 = 𝟢) 𝔼[𝘠𝘪𝟢(𝟢)|𝘎𝘪 = 𝟢] 𝔼[𝘠𝘪𝟣(𝟢)|𝘎𝘪 = 𝟢]
Treated group (𝘎𝘪 = 𝟣) 𝔼[𝘠𝘪𝟢(𝟢)|𝘎𝘪 = 𝟣] 𝔼[𝘠𝘪𝟣(𝟣)|𝘎𝘪 = 𝟣]

• Cross-sectional design
• Assumption: mean independence of treatment

𝔼[𝘠𝘪𝟣(𝟢)|𝘎𝘪 = 𝟣] = 𝔼[𝘠𝘪𝟣(𝟢)|𝘎𝘪 = 𝟢]

• Use post-treatment control group:

𝜏𝘈𝘛𝘛 = 𝔼[𝘠𝘪𝟣|𝘎𝘪 = 𝟣] − 𝔼[𝘠𝘪𝟣|𝘎𝘪 = 𝟢]
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Parallel trends

𝔼[𝘠𝘪𝟣(𝟢) − 𝘠𝘪𝟢(𝟢)|𝘎𝘪 = 𝟢] = 𝔼[𝘠𝘪𝟣(𝟢) − 𝘠𝘪𝟢(𝟢)|𝘎𝘪 = 𝟣]

• Key assumption of differences-in-differences: parallel trends

• Interpretation:

• Secular trend in the control group is a good proxy how the treated group
would have changed over time without treatment.

• Why is this weaker than other assumption?

• Allows for time-constant unmeasured confounding between 𝘠𝘪 𝘵 and 𝘎𝘪
• Allows for (common) secular trends in the outcome over time (unlike FE).

• Not invariant to nonlinear transformations!

• Parallel trends for 𝘠𝘪 𝘵 implies non-parallel trends for log(𝘠𝘪 𝘵) and vice
versa.
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• Allows for time-constant unmeasured confounding between 𝘠𝘪 𝘵 and 𝘎𝘪
• Allows for (common) secular trends in the outcome over time (unlike FE).

• Not invariant to nonlinear transformations!

• Parallel trends for 𝘠𝘪 𝘵 implies non-parallel trends for log(𝘠𝘪 𝘵) and vice
versa.
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Identification

• Identification result:

𝜏𝘈𝘛𝘛 = (𝔼[𝘠𝘪𝟣|𝘎𝘪 = 𝟣] − 𝔼[𝘠𝘪𝟢|𝘎𝘪 = 𝟣])
− (𝔼[𝘠𝘪𝟣|𝘎𝘪 = 𝟢] − 𝔼[𝘠𝘪𝟢|𝘎𝘪 = 𝟢])

• Threat to identification: non-parallel trends

• unmeasured time-varying confounding
• Ashenfelter’s dip: empirical finding that people who enroll in job
training programs see their earnings decline prior to that training.

• Falsification test: check pre-treatment parallel trends.

• Doesn’t imply parallel trends hold for the post-period however!
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Checking parallel trends (de Kadt/Larreguy,
2018)
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Estimation

• Estimation with panel data:

𝜏ATT = 𝟣
𝘯𝟣

𝘯
∑
𝘪=𝟣

𝘎𝘪 {𝘠𝘪𝟣 − 𝘠𝘪𝟢}
⏟⏟⏟⏟⏟⏟⏟⏟⏟
average trend in treated group

− 𝟣
𝘯𝟢

𝘯
∑
𝘪=𝟣

(𝟣 − 𝘎𝘪 ) {𝘠𝘪𝟣 − 𝘠𝘪𝟢}
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
average trend in the control group

• Standard errors from standard difference in means.

• Regression implementation:

• Regress Δ𝘠𝘪 = 𝘠𝘪𝟣 − 𝘠𝘪𝟢 on 𝘎𝘪 .
• Use (cluster) robust SEs

• Also possible to use DID on repeated cross sections.
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DID and linear two-way fixed effects

• Linear two-way (group and time) fixed effect model:

𝘠𝘪 𝘵 = 𝛼 + 𝛾𝘎𝘪 + 𝛽𝘵 + 𝜏𝘋𝘪 𝘵 + 𝜀𝘪 𝘵

• Fixed effect for group and time.
• Be sure to cluster by unit (or level of treatment assignment)

• Coefficient on 𝘋𝘪 𝘵 equivalent to DID estimation.

• Only holds for the 2 group, 2 period case!

• Large new literature on interpretation of TWFE in more general cases.
• Basically, TWFE is an odd weighted average of DID effects with
sometimes negative weights.
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DID vs lagged dependent variable

• Alternative identification assumption:

𝘠𝘪𝟣(𝟢) ⟂⟂ 𝘎𝘪 ∣ 𝘠𝘪𝟢

• Doesn’t imply and isn’t implied by parallel trends.
• Benefit over parallel trends: it is scale-free.
• Equivalent to parallel trends if 𝔼[𝘠𝘪𝟢 ∣ 𝘎𝘪 = 𝟣] = 𝔼[𝘠𝘪𝟢 ∣ 𝘎𝘪 = 𝟢]

• Different ideas about why there is imbalance on the LDV:

• DID: time-constant unmeasured confounder creates imbalance.
• LDV: previous outcome directly affects treatment assignment.
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DID/LDV bracketing
• Estimator: estimate CEF 𝔼[𝘠𝘪𝟣 ∣ 𝘠𝘪𝟢, 𝘎𝘪 ] = 𝛼 + 𝜌𝘠𝘪𝟢 + 𝜏𝘎𝘪

𝜏𝘓𝘋𝘝 = 𝟣
𝘯𝟣

𝘯
∑
𝘪=𝟣

𝘎𝘪𝘠𝘪𝟣 − 𝟣
𝘯𝟢

𝘯
∑
𝘪=𝟣

(𝟣 − 𝘎𝘪 )𝘠𝘪𝟣
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

difference in post period

− ̂𝜌𝘓𝘋𝘝 { 𝟣
𝘯𝟣

𝘯
∑
𝘪=𝟣

𝘎𝘪𝘠𝘪𝟢 − 𝟣
𝘯𝟢

𝘯
∑
𝘪=𝟣

(𝟣 − 𝘎𝘪 )𝘠𝘪𝟢}
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

difference in pre period

• If ̂𝜌𝘓𝘋𝘝 = 𝟣 then 𝜏𝘋𝘐𝘋 = 𝜏𝘓𝘋𝘝 and if 𝟢 ≤ ̂𝜌𝘓𝘋𝘝 < 𝟣:

• If 𝘎𝘪 = 𝟣 has higher baseline outcomes⇝ 𝜏𝘓𝘋𝘝 > 𝜏𝘋𝘐𝘋 .
• If 𝘎𝘪 = 𝟣 has lower baseline outcomes⇝ 𝜏𝘋𝘐𝘋 > 𝜏𝘓𝘋𝘝 .

• Bracketing relationship: if you willing to assume parallel trends or LDV,

𝔼[𝜏𝘓𝘋𝘝 ] ≥ 𝜏att ≥ 𝔼[𝜏𝘋𝘐𝘋 ]

• Holds nonparametrically as well.
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Nonparametric identification

• Up until now, we assumed unconditional parallel trends. What if this
doesn’t hold?

• Alternative identification: conditional parallel trends

𝘌[𝘠𝘪𝟣(𝟢) − 𝘠𝘪𝟢(𝟢) ∣ 𝗫𝘪 , 𝘎𝘪 = 𝟣] = 𝘌[𝘠𝘪𝟣(𝟢) − 𝘠𝘪𝟢(𝟢) ∣ 𝗫𝘪 , 𝘎𝘪 = 𝟢]

• What does this assumption say? It says that the potential trend under
control is the same for the control and treated groups, conditional on
covariates.

• Units that are similar at baseline will follow similar paths under no
treatment.

• Matching: conduct DID analysis on units with similar values of 𝗫𝘪
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Semiparametric estimation with repeated
outcomes

• How to estimate regression DID without strong linearity assumptions?

• Abadie (2005) derives weighting estimators in this setting:

𝔼[𝘠𝘪𝟣(𝟣) − 𝘠𝘪𝟣(𝟢) ∣ 𝘎𝘪 = 𝟣] = 𝔼 [(𝘠𝘪𝟣 − 𝘠𝘪𝟢)
ℙ(𝘎𝘪 = 𝟣) ⋅ 𝘎𝘪 − ℙ(𝘎𝘪 = 𝟣 ∣ 𝗫𝘪 )

𝟣 − ℙ(𝘎𝘪 = 𝟣 ∣ 𝗫𝘪 )
]

• Reweights control group to have the same distribution of 𝗫𝘪 as treated
group.

• Have to estimate the propensity score ℙ(𝘎𝘪 = 𝟣 ∣ 𝗫𝘪 )

• Possible model misspecification!
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2/ Fixed effects



Basic idea of fixed effects
• “One way” fixed effects generalizes the before/after design.

• Arbitrary treatment timing, covariates, etc.
• Units: 𝘪 = 𝟣, … , 𝘯
• Causal ordering with time: covariates 𝗫𝘪 𝘵 , treatment 𝘋𝘪 𝘵 , outcome 𝘠𝘪 𝘵
• History of a variable: 𝘋 𝘪 𝘵 = (𝘋𝘪𝟣, … , 𝘋𝘪 𝘵) and 𝘋 𝘪 ≡ 𝘋 𝘪𝘛

• Linear fixed effects model: 𝘠𝘪 𝘵 = 𝛼𝘪 + 𝜏𝘋𝘪 𝘵 + 𝗫′
𝘪 𝛽 + 𝜀𝘪 𝘵

• Key assumption: strict exogeneity 𝔼[𝜀𝘪 𝘵 ∣ 𝗫𝘪 , 𝘋 𝘪 , 𝛼𝘪 ] = 𝟢
• Implies no feedback between outcome and treatment (𝘠𝘪 𝘵 ↛ 𝘋𝘪 ,𝘵+𝟣)
• ⇝ LDV cannot be a confounder!
• Imai and Kim (2019, AJPS) give clarification on these identification issues.

• Implicit assumption of no carryover? 𝘠𝘪 𝘵(𝘥𝟣, … , 𝘥𝘵) = 𝘠𝘪 𝘵(𝘥𝘵)

• More a choice of estimand: focuses on contemporaneous effect.
• Treatment history follows observed path through 𝘵 − 𝟣:

𝘠𝘪 𝘵(𝘥𝘵) = 𝘠𝘪 𝘵(𝘋𝘪𝟣, … , 𝘋𝘪 ,𝘵−𝟣, 𝘥𝘵)
• ⇝ lags of treatments become part of time-varying confounders.
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𝘠𝘪 𝘵(𝘥𝘵) = 𝘠𝘪 𝘵(𝘋𝘪𝟣, … , 𝘋𝘪 ,𝘵−𝟣, 𝘥𝘵)
• ⇝ lags of treatments become part of time-varying confounders.
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Strict exogeneity DAG

𝘋𝘪𝟤

𝗫𝘪𝟤

𝘠𝘪𝟤𝘋𝘪𝟣

𝗫𝘪𝟣

𝘠𝘪𝟣 𝘋𝘪𝟥

𝗫𝘪𝟥

𝘠𝘪𝟥

𝘜𝘪

Strict exogeneity implied by strict ignorability 𝘠𝘪 𝘵(𝘥) ⟂⟂ 𝘋 𝘪 ∣ 𝘟 𝘪 , 𝘜𝘪
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FE estimation
• With linear models, two transformations can purge the fixed effects.

• Within/FE transformation: ̈𝘡𝘪 𝘵 = 𝘡𝘪 𝘵 − 𝘛 −𝟣 ∑𝘛
𝘴=𝟣 𝘡𝘪𝘴

̈𝘠𝘪 𝘵 = ̈𝘟 ′
𝘪𝘵𝛽 + 𝜏 𝘋̈𝘪 𝘵 + ̈𝜀𝘪 𝘵

• Time-demeaning 𝘠𝘪 𝘵 purges the time constant fixed effect.
• But they retain the same coefficients as the original model.

• First differences: Δ𝘡𝘪 𝘵 = 𝘡𝘪 𝘵 − 𝘡𝘪 ,𝘵−𝟣

Δ𝘠𝘪 𝘵 = Δ𝗫′
𝘪𝘵𝛽 + 𝜏Δ𝘋𝘪 𝘵 + Δ𝜀𝘪 𝘵

• Estimation: pooled OLS of either specification, 𝜏fe, 𝜏fd

• Both consistent under strict exogeneity.
• FE more efficient if original errors, 𝜀𝘪 𝘵 , are serially uncorrelated.
• FD more efficient if differences, Δ𝜀𝘪 𝘵 , are serially uncorrelated.
• Latter allows for substantial serial dependence in the original errors.
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Estimation notes

• Within estimator can be implemented by adding unit dummy variables.

argmax
𝛼,𝛽,𝜏 ,𝛾

𝘯
∑
𝘪=𝟣

𝘛
∑
𝘵=𝟣

(𝘠𝘪 𝘵 − 𝛼 − 𝗫′
𝘪𝘵𝛽 − 𝜏𝘋𝘪 𝘵 −

𝘯
∑
𝘬=𝟤

𝛾𝘬𝟙(𝘪 = 𝘬))
𝟤

• Least squares dummy variable estimator reasonable for moderate 𝘯
• Computationally inefficient for large 𝘯 (number of dummies grows with

𝘯)

• Best practice: cluster variances at the unit level.

• With CR variance estimators, LSDV “double counts” degrees of freedom
• Better to use within estimator in that case.

• Best choice: use canned packages.

• {fixest} in R, -reghdfe- in Stata
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Non-constant treatment effects

• LFE models assume constant treatment effects. What happens if not?

• OLS typically biased because nonconstant effects induce correlation
between treatment and error.

• With no covariates and no only treated/control units:

𝜏fe
𝘱

→
𝔼 [( ∑𝘵 𝘋𝘪 𝘵 𝘠𝘪 𝘵

∑𝘵 𝘋𝘪 𝘵
− ∑𝘵 (𝟣−𝘋𝘪 𝘵 )𝘠𝘪 𝘵

∑𝘵 (𝟣−𝘋𝘪 𝘵 ) ) 𝘚𝟤
𝘪 ]

𝔼[𝘚𝟤
𝘪 ] ≠ 𝜏

• 𝘚𝟤
𝘪 is the within-unit treatment variance.

• Units with even treatment/control split upweighted.

• Imai, Kim & Wang (2019, AJPS): use a matching to target the ATE.

• Match treated and control periods within units (also weakens linearity).
• {PanelMatch} R package.
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Strict vs. sequential exogeneity/ignorability

• Strict exogeneity/ignorability is very strong.

• Remember: rules out all outcome-treatment feedback.

• Weaker assumption: Sequential ignorability:

𝘠𝘪 𝘵(𝘥) ⟂⟂ 𝘋𝘪 𝘵 ∣ 𝗫𝘪 𝘵 , 𝘋 𝘪 ,𝘵−𝟣, 𝛼𝘪

• Allow 𝘠𝘪 𝘵 to be related to future 𝘋𝘪 ,𝘵+𝘴

• This implies sequential exogeneity of the errors: 𝔼[𝜀𝘪 𝘵 ∣ 𝗫𝘪 𝘵 , 𝘋 𝘪 𝘵 , 𝛼𝘪 ] = 𝟢.

• Estimation to these dynamic panel models:

• instrumental variables (Arellano and Bond) using lagged difference and
levels as instruments (only valid for linear models).

• bias correction: estimate the bias and subtract it off (valid for nonlinear
models too).
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Effect of lagged treatments

• Focused on the contemporaneous effect of 𝘋𝘪 𝘵 .

• What about treatment histories 𝘠𝘪 𝘵(𝘥𝘵−𝟣, 𝘥𝘵)?

• Very difficult, if not impossible with fixed effects models.

• Complicated by the effect of treatment on time-varying confounders.
• Pathways involving 𝗫𝘪 𝘵(𝘥𝘵−𝟣) difficult to identify.

• Possible approach: propensity score FEs (Blackwell & Yamauchi, 2021)

• Include unit dummies in propensity score model.
• Bias from incidental parameters, but disappears as 𝘛 → ∞
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3/ Synthetic control
methods



Synthetic controls

• Abadie and Gardeazabal (2003) use a DID approach for “quantitative
case studies.”

• Application: effect of an intervention in a single country/state at one
point in time.

• Basic idea: 1 treated group, many controls.

• Compare the time-series outcomes in the treated group to the control.
• But which control group should you use?
• Many possible choices and they may not be comparable to the treated.

• Synthetic control: use a convex combination of the controls to create a
synthetic control.

• Choose the weights that minimize the pretreatment differences between
treated and synthetic control.
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Intervention study

Time period
1 2 ⋯ 𝘛𝟢 𝘛𝟢 + 𝟣 ⋯ 𝘛

Treated unit (𝘪 = 𝟣) 0 0 0 0 1 1 1
Control group (𝘪 = 𝟤, … , 𝘑 + 𝟣) 0 0 0 0 0 0 0

• Treatment:

• All units untreated for 𝘛𝟢 periods.
• Unit 1 starts treatment at 𝘛𝟢, continues until 𝘛 .

• Potential outcomes:

• 𝘠𝘪 𝘵(𝟣): potential outcome at time 𝘵 if 𝘪 had been in the treated group.
• 𝘠𝘪 𝘵(𝟢): potential outcome at time 𝘵 if 𝘪 had been in the control group.
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Missing counterfactuals

• By consistency, for 𝘵 > 𝘛𝟢:

𝜏𝟣𝘵 = 𝘠𝟣𝘵(𝟣) − 𝘠𝟣𝘵(𝟢) = 𝘠𝟣𝘵 − 𝘠𝟣𝘵(𝟢)

• Need to impute missing potential outcomes, 𝘠𝟣𝘵(𝟢).

• Synthetic control: Choose weights (𝘸𝟤, … , 𝘸𝘑+𝟣)′ such that:

• 𝘸𝘫 ≥ 𝟢 and ∑𝘫 𝘸𝘫 = 𝟣.
• for all 𝘵 ≤ 𝘛𝟢 minimize

∣𝘠𝟣𝘵 −
𝘑+𝟣
∑
𝘫=𝟤

𝘸𝘫𝘠𝘫𝘵 ∣ , ∣𝗭𝟣 −
𝘑+𝟣
∑
𝘫=𝟤

𝘸𝘫𝗭𝘫 ∣

• Can also add a penalty for how dispersed the weights are.

• We hope this implies for 𝘵 > 𝘛𝟢: ∑𝘑+𝟣
𝘫=𝟤 𝘸𝘫𝘠𝘫𝘵 ≈ 𝘠𝟣𝘵(𝟢)
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Synthetic control justification
• ADH provide two model-based justifications for SC.

• Model 1: Interacted factor model

𝘠𝘪 𝘵(𝟢) = 𝗫′
𝘪 𝜷𝘵 + 𝛼𝘪 + 𝛿𝘵 + 𝝀𝘵𝝁𝘪 + 𝜀𝘪 𝘵

• 𝜷𝘵 are time-varying coefficients on covariates.
• 𝝀𝘵 is a 𝟣 × 𝘍 vector of common factors
• 𝝁𝘪 is a 𝘍 × 𝟣 vector of factor loadings
• 𝝀𝘵𝝁𝘪 allows time-varying confounding in a structured way.
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SCM properties

• Suppose perfect balancing weights exist (𝘸 ∗
𝟤 , … , 𝘸 ∗

𝘑+𝟣) such that:

𝘑+𝟣
∑
𝘫=𝟤

𝘸 ∗
𝘫 𝘠𝘫𝘵 = 𝘠𝟣𝘵

𝘑+𝟣
∑
𝘫=𝟤

𝘸 ∗
𝘫 𝗫𝘫 = 𝗫𝘪

• Let 𝘠𝟣𝘵(𝟢) = ∑𝘑+𝟣
𝘫=𝟤 𝘸 ∗

𝘫 𝘠𝘫𝘵 for post-intervention periods.

• Under Model 1, 𝘠𝟣𝘵(𝟢) → 𝘠𝟣𝘵(𝟢) as 𝘛𝟢 → ∞

• As length of pre-intervention period grows, estimates get better.

• Under Model 2, 𝔼 [𝘠𝟣𝘵(𝟢)] = 𝔼[𝘠𝟣𝘵(𝟢)]

• Unbiased only based on one pre-treatment periods.
• But it assumes away unmeasured confounding!

• Outside of those models: ?????
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Bias correction

• When pre-treatment fit is imperfect⇝ significant bias in SCM

• Augmented SCM: use regression models to correct for bias

• Let 𝘮𝘪 𝘵 = 𝘮𝘪 𝘵(𝘠 𝘪 ,𝘵−𝟣) be predicted values for a regression of
post-treatment outcomes on pre-treatment outcomes.

• Augment estimator (Ben-Michael, et al, 2021, JASA):

𝘠 aug
𝟣𝘵 (𝟢) =

𝘑+𝟣
∑
𝘫=𝟤

𝘸𝘫𝘠𝘫𝘵 + (𝘮𝟣𝘵 −
𝘑+𝟣
∑
𝘫=𝟤

𝘸𝘫𝘮𝘫𝘵)

• Can add covariates fairly easily.

• Very similar to bias correction in matching.
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• Very similar to bias correction in matching.
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Generalizing to more treated units

• Two estimation methods to generalize to any number of treated units.

• Interactive fixed effects: 𝘠𝘪 𝘵(𝟢) = 𝗫′
𝘪𝘵𝛽 + 𝛼𝘪 + 𝛿𝘵 + 𝝀𝘵𝝁𝘪

• Instead of weights, directly estimate IFE using iterative procedure:

1. Treat IFE terms as fixed and fit parametric part on untreated units to get
new ̂𝛽

2. Treat covariate coefficients as fixed and use factor analysis to estimate IFE
terms.

3. Repeat until convergence.

• Matrix completion methods (Athey et al, 2021)

• Treat matrix of control POs, 𝗬(𝟬) as missing data problem.
• Estimate lower-rank matrix 𝗟 as best approximation to observed parts
of 𝗬(𝟬) subject to regularization.
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