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Where are we? Where are we going?

• So far:

• Randomized experiments identify causal effects.
• Regression, matching, weighting for selection on observables.
• Instrumental variables for when this doesn’t hold

• Basic idea: find exogeneous variation in the treatment assignment

• RCT: randomization provides exogeneous variation.
• Selection on observables: treatment as-if random conditional on 𝘟𝘪
• IV: instrument provides exogeneous variation

• Regression discontinuity: a discontinuity in treatment assignment
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Plan of attack

1. Sharp Regression Discontinuity Designs

2. Estimation in the SRD

3. Bandwidth selection

4. Fuzzy Regression Discontinuity Designs
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1/ Sharp Regression
Discontinuity Designs



Setup

• The basic idea behind RDDs:

• Treatment assignment is determined by a cutoff in some variable 𝘟𝘪 .
• 𝘟𝘪 is a forcing/running variable

• Treatment changes discontinuously at the cutoff,

• …but unobserved confounders vary smoothly around the cutoff.

• ⇝ changes in the outcome at threshold have a causal interpretation

• The classic example of this is in the educational context:

• Scholarships allocated based on a test score threshold (Thistlethwaite
and Campbell, 1960)

• Class size on test scores using total student thresholds to create new
classes (Angrist and Lavy, 1999)
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Sharp RD

• Notation

• Treatment: 𝘋𝘪 = 𝟣 or 𝘋𝘪 = 𝟢
• Potential outcomes, 𝘠𝘪 (𝟣) and 𝘠𝘪 (𝟢)
• Observed outcomes: 𝘠𝘪 = 𝘠𝘪 (𝟣)𝘋𝘪 + 𝘠𝘪 (𝟢)(𝟣 − 𝘋𝘪 )
• Continuous forcing variable: 𝘟𝘪 ∈ ℝ (discrete more complicated)

• Sharp RD: 𝘋𝘪 = 𝟣{𝘟𝘪 ≥ 𝘤} ∀𝘪

• treatment is a deterministic function of the forcing variable and the
threshold.

• When test scores are above 1500 → offered scholarship
• When test scores are below 1500 → not offered scholarship

• Note: positivity violated by assumption here

• ℙ[𝘋𝘪 = 𝟣 ∣ 𝘟𝘪 = 𝘤 − 𝜀] = 𝟢
• ℙ[𝘋𝘪 = 𝟣 ∣ 𝘟𝘪 = 𝘤 + 𝜀] = 𝟣
• Can’t use standard identification toolkit for ATE/ATT.
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Plotting the RDD (Imbens and Lemieux, 2008)
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Quantity of interest

• Quantity of interest: local average treatment effect at the cutoff

𝜏SRD = 𝘌[𝘠𝘪 (𝟣) − 𝘠𝘪 (𝟢)|𝘟𝘪 = 𝘤]
= 𝘌[𝘠𝘪 (𝟣)|𝘟𝘪 = 𝘤] − 𝘌[𝘠𝘪 (𝟢)|𝘟𝘪 = 𝘤]

• Very difficult to extrapolate beyond this.

• Problem: 𝘟𝘪 is continuous so we never observe any 𝘟𝘪 = 𝘤 .

• ⇝ identification comes from extrapolation around 𝘤 to 𝘤
• Extrapolation requires smoothness

7 / 42



Continuity of the CEFs
• Assumption: CEFs of potential outcomes are continuous in 𝘟𝘪

• 𝜇𝟣(𝘹) = 𝔼[𝘠𝘪 (𝟣) ∣ 𝘟𝘪 = 𝘹] is continuous
• 𝜇𝟢(𝘹) = 𝔼[𝘠𝘪 (𝟢) ∣ 𝘟𝘪 = 𝘹] is continuous

• This continuity implies the following:

𝘌[𝘠𝘪 (𝟢)|𝘟𝘪 = 𝘤] = lim
𝘹↑𝘤

𝘌[𝘠𝘪 (𝟢)|𝘟𝘪 = 𝘹] (continuity)

= lim
𝘹↑𝘤

𝘌[𝘠𝘪 (𝟢)|𝘋𝘪 = 𝟢, 𝘟𝘪 = 𝘹] (SRD)

= lim
𝘹↑𝘤

𝘌[𝘠𝘪 |𝘟𝘪 = 𝘹] (consistency/SRD)

• Note that this is the same for the treated group:

𝘌[𝘠𝘪 (𝟣)|𝘟𝘪 = 𝘤] = lim
𝘹↓𝘤

𝘌[𝘠𝘪 |𝘟𝘪 = 𝘹]
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Identification results
• Consistency + SRD Assumption + Continuity⇝ identification:

𝜏𝘚𝘙𝘋 = 𝘌[𝘠𝘪 (𝟣) − 𝘠𝘪 (𝟢)|𝘟𝘪 = 𝘤]
= 𝘌[𝘠𝘪 (𝟣)|𝘟𝘪 = 𝘤] − 𝘌[𝘠𝘪 (𝟢)|𝘟𝘪 = 𝘤]
= lim

𝘹↓𝘤
𝘌[𝘠𝘪 |𝘟𝘪 = 𝘹] − lim

𝘹↑𝘤
𝘌[𝘠𝘪 |𝘟𝘪 = 𝘹]

• Problem: estimate two regression functions at a point.

• Without parametric assumptions, very hard!
• Nonparametric regression can be consistent, but converge is slow and

• NB: not equivalent to local randomization,

{𝘠𝘪 (𝟣), 𝘠𝘪 (𝟢)} ⟂⟂ 𝟭 {𝘟𝘪 > 𝘤} ∣ 𝘤𝟢 ≤ 𝘟𝘪 ≤ 𝘤𝟣

• LR stronger than continuity because it rules out confounding around 𝘤
• Implies no slope around in 𝔼[𝘠𝘪 (𝘥) ∣ 𝘟𝘪 = 𝘹] around 𝘤
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Problems with local randomization assumptions
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What can go wrong?

• Key question: why is there a discontinuity in 𝘋𝘪 but not 𝘠𝘪 (𝘥)?

• What else might change at the cutoff?
• Using 65 age cutoff for RDD of AARP membership?

• Sorting around the threshold: possible violation of smoothness.

• Students retaking exams to pass some threshold for financial aid.
• Students with more money⇝ more exam retaking⇝ sorting.

11 / 42



2/ Estimation in the SRD



Bin plots

• Binned means plot is very standard:

𝘠 𝘬 = 𝟣
𝘯𝘬

𝘕
∑
𝘪=𝟣

𝘠𝘪 ⋅ 𝟭(𝘣𝘬 < 𝘟𝘪 ≤ 𝘣𝘬+𝟣)

• 𝘣𝘬 are the bin cutpoints.
• 𝘯𝘬 is the number of units within bin 𝘬 .

• What to observe:

• Obvious discontinuity at the threshold?
• Are there other, unexplained discontinuities?

• Very difficult to sell an RDD without visually obvious result.

• Imbens & Lemieux: Statistical analysis are just fancy versions of this plot
• If it’s not in the binned mean plot, unlikely to be a robust/credible effect.
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Example from close election RD

Figure 1:
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Other graphs to include

• Also good to include binned mean plots for pretreatment covariates.

• Intuition: key assumption in smoothness in the mean of 𝘠𝘪 (𝘥) in 𝘟𝘪 .

• Discontinuities in mean of covariates⇝ problematic

• Covariates unaffected by treatment so might indicate sorting.
• Might be an indication of discontinuities in the potential outcome means.
• Similar to balance tests in matching

• McCrary test: plot density of the forcing variable.

• Separate densities on either side of the cutoff.
• If there’s a discontinuity in the density, maybe a sign of sorting.
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Checking covariates at the discontinuity
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McCrary Test
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General estimation strategy

• The main goal in RD is to estimate the limits of various CEFs such as:

lim
𝘹↑𝘤

𝘌[𝘠𝘪 |𝘟𝘪 = 𝘹]

• Two features different from standard nonparametric regression:

• We want to estimate this regression at a single point.
• This point is a boundary point, making estimation challenging.

• Bias of nonparametric estimation at a boundary shrinks slowly.

• Only getting data from one side of the boundary!

• Naive approach: difference in means

• Problem: uses data too far from the boundary.
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Example of misleading trends
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Nonparametric and semiparametric approaches

• Upper and lower limit functions:

𝜇+(𝘹) = lim
𝘻↓𝘹

𝘌[𝘠𝘪 (𝟣)|𝘟𝘪 = 𝘻]

𝜇−(𝘹) = lim
𝘻↑𝘹

𝘌[𝘠𝘪 (𝟢)|𝘟𝘪 = 𝘻]

• For the SRD, we have 𝜏𝘚𝘙𝘋 = 𝜇+(𝘤) − 𝜇−(𝘤).

• Kernel regression with uniform kernel:

̂𝜇−(𝘤) = ∑𝘕
𝘪=𝟣 𝘠𝘪 ⋅ 𝟭{𝘤 − 𝘩 ≤ 𝘟𝘪 < 𝘤}
∑𝘕

𝘪=𝟣 𝟭{𝘤 − 𝘩 ≤ 𝘟𝘪 < 𝘤}

• 𝘩 is a bandwidth parameter, selected by you.

• Basically means among units no more than 𝘩 away from the threshold.
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Bandwidth equal to 7
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Bandwidth equal to 5
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Bandwidth equal to 1
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Local averages

• Estimate mean of 𝘠𝘪 when 𝘟𝘪 ∈ [𝘤, 𝘤 + 𝘩] and when 𝘟𝘪 ∈ [𝘤 − 𝘩, 𝘤).

• Can also view as regression on those units less than 𝘩 away from 𝘤 :

( ̂𝛼, 𝜏SRD) = argmin
𝛼,𝜏

∑
𝘪 ∶𝘟𝘪 ∈[𝘤−𝘩,𝘤+𝘩]

(𝘠𝘪 − 𝛼 − 𝜏𝘋𝘪 )𝟤

• Predictions about 𝘠𝘪 are locally constant on either side of the cutoff.

• 𝘩 is a tuning parameter that controls the bias-variance tradeoff :

• High 𝘩: high bias, low variance (more data points, farther from the cutoff)
• Low 𝘩: low bias, high variance (fewer data points, closer to the cutoff)

• Downside with averages: bias shrinks slowly as 𝘩 shrinks.

• Likely large finite sample bias, poor coverage of confidence intervals.
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Local linear regression
• Instead of a local constant, we can use a local linear regression

• Run a linear regression of 𝘠𝘪 on 𝘟𝘪 − 𝘤 in the group 𝘟𝘪 ∈ [𝘤 − 𝘩, 𝘤):

( ̂𝛼−, ̂𝛽−) = argmin
𝛼,𝛽

∑
𝘪 ∶𝘟𝘪 ∈[𝘤−𝘩,𝘤)

(𝘠𝘪 − 𝛼 − 𝛽(𝘟𝘪 − 𝘤))𝟤

• Same regression for group with 𝘟𝘪 ∈ [𝘤, 𝘤 + 𝘩]:

( ̂𝛼+, ̂𝛽+) = argmin
𝛼,𝛽

∑
𝘪 ∶𝘟𝘪 ∈[𝘤,𝘤+𝘩]

(𝘠𝘪 − 𝛼 − 𝛽(𝘟𝘪 − 𝘤))𝟤

• Our estimate is

𝜏SRD = ̂𝜇+(𝘤) − ̂𝜇−(𝘤)
= ̂𝛼+ + ̂𝛽+(𝘤 − 𝘤) − ̂𝛼− − ̂𝛽−(𝘤 − 𝘤)
= ̂𝛼+ − ̂𝛼−
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More practical estimation

• Simplest to use one regression:

argmin
(𝛼,𝛽,𝜏 ,𝛾)

∑
𝘪 ∶𝘟𝘪 ∈[𝘤−𝘩,𝘤+𝘩]

{𝘠𝘪 − 𝛼 − 𝛽(𝘟𝘪 − 𝘤) − 𝜏𝘋𝘪 − 𝛾(𝘟𝘪 − 𝘤)𝘋𝘪}
𝟤

• 𝜏𝘚𝘙𝘋 = 𝜏 is the coefficient on the treatment.
• Key: interaction between treatment and forcing variable.

• Yields numerically the same as the separate regressions.

• Often better to use a kernel to weight points close to 𝘤 more heavily.

argmin
(𝛼,𝛽,𝜏 ,𝛾)

𝘯
∑

𝟣
𝘒 (𝘟𝘪 − 𝘤

𝘩 ) {𝘠𝘪 − 𝛼 − 𝛽(𝘟𝘪 − 𝘤) − 𝜏𝘋𝘪 − 𝛾(𝘟𝘪 − 𝘤)𝘋𝘪}
𝟤

• Popular choice is the triangular kernel: 𝘒(𝘶) = (𝟣 − |𝘶|) ⋅ 𝟭(|𝘶| < 𝟣)
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Bandwidth equal to 10 (Global)
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Bandwidth equal to 7
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Bandwidth equal to 5
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Bandwidth equal to 1
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3/ Bandwidth selection



Bandwidths and bias

• Optimal bandwidth shrinks fast enough so 𝘩𝘯 ∝ 𝘯−𝟣/𝟧.

• But this results in asymptotic bias, two possible solutions.

• Undersmoothing: have bandwidth shrink more quickly e.g. 𝘩𝘯 ∝ 𝘯−𝟣/𝟦

• Smaller bandwidths⇝ less bias.
• Problem: most ways of actually selecting the optimal bandwidth will be
too big. Bias strikes back.

• Robust bias correction: 𝜏 rbc
SRD = 𝜏SRD − b̂ias

• Calonico, Cattaneo, and Titiunik (CCT, 2014, Econometrica) gives the form.
• Allows the use of optimal bandwidths, but need to account for
estimation of bias.

• Bias estimation comes from using higher order polynomials regression.

• Coverage of CIs can be very bad without RBC!
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Selecting the optimal bandwidth

• Let ℬ and 𝒱 be approximations of the bias and variance of 𝜏SRD(𝘩)

• Based on quadratic approximation of 𝜇𝘥 (𝘹) rather than linear.

• Idea: find the bandwidth that minimizes the estimation error.

𝘔𝘚𝘌(𝘩) = 𝔼[(𝜏 (𝘩) − 𝜏SRD)𝟤 ∣ 𝘟𝟣, … , 𝘟𝘯] ≈ 𝘩𝟦ℬ𝟤 + 𝟣
𝘯𝘩 𝒱

• Optimal bandwidth: 𝘩MSE = ( 𝒱
𝟦ℬ𝟤 )𝟣/𝟧 𝘯−𝟣/𝟧

• But these depend on unknown biases/variances.

• Procedure:

1. Pick initial bandwidths to estimate ℬ and 𝒱 with local quadratic
regression.

2. Pick optimal bandwidth for bias correction term and estimate bias with
local quadratic regression.

3. Use both steps to pick optimal bandwidth for local linear regression (𝘩𝘯)
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Odds and ends for the SRD

• Standard errors: robust standard errors from local OLS are valid.

• Not great in finite samples because the bandwidth isn’t designed for this
purpose.

• CCT derives nearest neighbors variance estimator that has better
coverage.

• If using RBC, you need to account for that in variance.

• Covariates: can add them to the local linear model, but be wary.

• If covariates are continuous at the cutoff, won’t affect estimates much.
• If they aren’t, raises suspicions about identification.
• ALWAYS REPORT MODELS WITHOUT COVARIATES FIRST

• Possible to use local polynomial regression beyond linear, but
performance is poor (very sensitive to end points)

• Use {rdrobust} package for CCT bandwidths/estimation.
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4/ Fuzzy Regression
Discontinuity Designs



Setup

• Fuzzy RD: discontinuity in the probability of treatment.

lim
𝘹↓𝘤

Pr[𝘋𝘪 = 𝟣 ∣ 𝘟𝘪 = 𝘹] ≠ lim
𝘹↑𝘤

Pr[𝘋𝘪 = 𝟣 ∣ 𝘟𝘪 = 𝘹]

• No longer deterministic function of forcing variable.
• SRD is a special case of the FRD.

• Common use case: threshold allows participation in program.

• Some might not participate even if allowed (noncompliance)

• Forcing variable is an instrument:

• affects 𝘠𝘪 , but only through 𝘋𝘪 (at the threshold)
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Fuzzy RD in a graph
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Fuzzy RD assumptions
• 𝘋𝘪 (𝘹) potential value of treatment as cutoff changes around 𝘤 .

• 𝘋𝘪 (𝘹) = 𝟣 if unit 𝘪 would take treatment if cutoff were 𝘹
• 𝘋𝘪 (𝘹) = 𝟢 if unit 𝘪 would take control if cutoff were 𝘹 .

• Monotonicity assumption: 𝘋𝘪 (𝘹) is non-increasing in 𝘹 .

• Lowering the cutoff can only increase participation.

• Compliers are those 𝘪 such that for all 𝟢 < 𝘦 < 𝜀:

𝘋𝘪 (𝘤 − 𝘦) = 𝟣 and 𝘋𝘪 (𝘤 + 𝘦) = 𝟢

• Lowering or increasing the threshold would affect their treatment status.
• Compliance status unobserveable.

• Example: college students that get above a certain GPA are encouraged
to apply to grad school.

• Compliers wouldn’t apply if threshold were slightly higher.
• Compliers would apply if the threshold were slightly lower.
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Compliance graph

Cutoff
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• Compliers would not take the treatment if they had 𝘟𝘪 = 𝘤 and we
increased the cutoff by some small amount

• These are compliers at the threshold
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Compliance groups
• Compliers: 𝘋𝘪 (𝘤 − 𝘦) = 𝟣 and 𝘋𝘪 (𝘤 + 𝘦) = 𝟢
• Always-takers: 𝘋𝘪 (𝘤 + 𝘦) = 𝘋𝘪 (𝘤 − 𝘦) = 𝟣
• Never-takers: 𝘋𝘪 (𝘤 + 𝘦) = 𝘋𝘪 (𝘤 − 𝘦) = 𝟢
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Compliance groups
• Compliers: 𝘋𝘪 (𝘤 − 𝘦) = 𝟣 and 𝘋𝘪 (𝘤 + 𝘦) = 𝟢
• Always-takers: 𝘋𝘪 (𝘤 + 𝘦) = 𝘋𝘪 (𝘤 − 𝘦) = 𝟣
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LATE in the Fuzzy RD

• We can define an estimator that is in the spirit of IV:

𝜏𝘍𝘙𝘋 = lim𝘹↓𝘤 𝔼[𝘠𝘪 ∣ 𝘟𝘪 = 𝘹] − lim𝘹↑𝘤 𝔼[𝘠𝘪 ∣ 𝘟𝘪 = 𝘹]
lim𝘹↓𝘤 𝔼[𝘋𝘪 ∣ 𝘟𝘪 = 𝘹] − lim𝘹↑𝘤 𝔼[𝘋𝘪 ∣ 𝘟𝘪 = 𝘹]

= effect of threshold on 𝘠𝘪
effect of threshold on 𝘋𝘪

• Under the FRD assumption, continuity, consistency, and monotonicity,
we can write that the estimator is equal to the effect at the threshold
for compliers.

𝜏𝘍𝘙𝘋 = 𝔼[𝜏𝘪 ∣ 𝘪 is a complier, 𝘟𝘪 = 𝘤]

• Proof is very similar to the LATE proof

• External validity? Doubly local⇝ careful about generalizing.
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Estimation in FRD

• Remember that we had:

𝜏FRD = lim𝘹↓𝘤 𝘌[𝘠𝘪 ∣ 𝘟𝘪 = 𝘹] − lim𝘹↑𝘤 𝘌[𝘠𝘪 ∣ 𝘟𝘪 = 𝘹]
lim𝘹↓𝘤 𝘌[𝘋𝘪 ∣ 𝘟𝘪 = 𝘹] − lim𝘹↑𝘤 𝘌[𝘋𝘪 ∣ 𝘟𝘪 = 𝘹]

• Ratio of SRD estimands: use local linear regression for both.

𝜏FRD = 𝜏𝘠 ,SRD
𝜏𝘋,SRD

• CCT provides (more complicated) robust bias correction, bandwidths.
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More practical FRD estimation
• The ratio estimator above is equivalent to a TSLS approach.

• Use the same specification as above with the following covariates:

𝘝𝘪 =
⎛⎜⎜⎜⎜
⎝

𝟣
𝟭{𝘟𝘪 < 𝘤}(𝘟𝘪 − 𝘤)
𝟭{𝘟𝘪 ≥ 𝘤}(𝘟𝘪 − 𝘤)

⎞⎟⎟⎟⎟
⎠

• First stage:
𝘋𝘪 = 𝛿 ′

𝟣𝘝𝘪 + 𝜌𝟭{𝘟𝘪 ≥ 𝘤} + 𝜈𝘪

• Second stage:
𝘠𝘪 = 𝛿 ′

𝟤𝘝𝘪 + 𝜏𝘋𝘪 + 𝜂𝘪

• Thus, being above the threshold is treated like an instrument,
controlling for trends in 𝘟𝘪 .
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Kink RD

• Sharp Kink RD: discontinuities in the first derivatives rather than levels.

• Unemployment benefits as a function of prior earnings.
• If there is a cap on benefits, there’s a kink in the assignment.
• Look for changes in the slope of 𝔼[𝘠𝘪 ∣ 𝘟𝘪 = 𝘹] at threshold.
• Estimation Similar, but better to use local quadratic regression.
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