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Where are we? Where are we going?

- Before: learned about CEFs and linear projections in the population.
+ Last time: OLS estimator, its algebraic properties.

+ Now: its statistical properties, both finite-sample and asymptotic.
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Acemoglu, Johnson, and Robinson (2001)

Political Institutions and Economic Development

Log GDP pc, 1995
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Sampling distribution of the OLS estimator

+ OLS is an estimator—we plug data into and we get out estimates.

Sample L {(YlaXl% 000 §) (anxn)}
Sample 2: {(Yy, Xy), ., (Y, X,)}
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Sampling distribution of the OLS estimator

+ OLS is an estimator—we plug data into and we get out estimates.

Sample L {(YlaXl% 000 §) (anxn)}

Sample 2: {(Y1, X1), ..., (Y, X;)} |

g OoLS
sample k —1: {(Yy, X)), .., (Y,, X,)} —

Sample k: {(Yy,X1), -, (Y, X))} -/

(B(h Bl)l

/') (B07B1)2

> Gofix
B a5

+ Just like the sample mean or sample difference in means
+ Has a sampling distribution, with a sampling variance/standard error.
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Simulation procedure

+ Let's take a simulation approach to demonstrate:

+ Pretend that the AJR data represents the population of interest
+ See how the line varies from sample to sample

1. Draw a random sample of size n = 30 with replacement using
sample()

2. Use lm() to calculate the OLS estimates of the slope and intercept

3. Plot the estimated regression line
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Population Regression
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+ We want finite-sample guarantees about our estimates.
+ Unbiasedness, exact sampling distribution, etc.
+ But finite-sample results come at a price in terms of assumptions.

+ Unbiasedness: CEF is linear.
+ Exact sampling distribution: normal errors.

+ Asymptotic results hold under much weaker assumptions, but require
more data.

+ OLS consistent for the linear projection even with nonlinear CEF.
-+ Asymptotic normality for sampling distribution under mild assumptions.

+ Focus on two models:

- Linear projection model for asymptotic results.
- Linear regression/CEF model for finite samples.
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1/ Linear projection model
and Large-sample
Properties



Linear projection model

« We'll start at the most broad, fewest assumptions

9/51



Linear projection model

« We'll start at the most broad, fewest assumptions

Linear projection model

1. For the variables (Y, X), we assume the linear projection of Y on X is

defined as:
Y=XB+e

E[Xe] = 0.

9/51



Linear projection model

« We'll start at the most broad, fewest assumptions

Linear projection model

1. For the variables (Y, X), we assume the linear projection of Y on X is

defined as:
Y=XB+e

E[Xe] = 0.

2. The design matrix is invertible, so E[X;X/] > 0 (positive definite).

9/51



Linear projection model

« We'll start at the most broad, fewest assumptions

Linear projection model

1. For the variables (Y, X), we assume the linear projection of Y on X is

defined as:
Y=XB+e

E[Xe] = 0.

2. The design matrix is invertible, so E[X;X/] > 0 (positive definite).

+ Linear projection model holds under very mild assumptions.

9/51



Linear projection model

« We'll start at the most broad, fewest assumptions

Linear projection model

1. For the variables (Y, X), we assume the linear projection of Y on X is

defined as:
Y=XB+e

E[Xe] = 0.

2. The design matrix is invertible, so E[X;X/] > 0 (positive definite).

+ Linear projection model holds under very mild assumptions.

+ Remember: not even assuming linear CEF!

9/51



Linear projection model

« We'll start at the most broad, fewest assumptions

Linear projection model

1. For the variables (Y, X), we assume the linear projection of Y on X is

defined as:
Y=XB+e

E[Xe] = 0.

2. The design matrix is invertible, so E[X;X/] > 0 (positive definite).
+ Linear projection model holds under very mild assumptions.

+ Remember: not even assuming linear CEF!
+ Implies coefficients are B = (E[XX'])E[XY]

9/51



Linear projection model

« We'll start at the most broad, fewest assumptions

Linear projection model

1. For the variables (Y, X), we assume the linear projection of Y on X is

defined as:
Y=XB+e

E[Xe] = 0.

2. The design matrix is invertible, so E[X;X/] > 0 (positive definite).

+ Linear projection model holds under very mild assumptions.

+ Remember: not even assuming linear CEF!
+ Implies coefficients are B = (E[XX'])E[XY]

+ What properties can we derive under such weak assumptions?
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A very useful decomposition
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+ OLS estimates are the truth plus some estimation error.
+ Most of what we derive about OLS comes from this view.

+ Sample means in the estimation error follow the law of large numbers:
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b (280) () oo (Em0) (2me)

estimation error

+ OLS estimates are the truth plus some estimation error.
+ Most of what we derive about OLS comes from this view.

+ Sample means in the estimation error follow the law of large numbers:

—ZXX’—HEXX] Qux %ine,-i)[E[Xe]zo

i=1

+ Qxx Is invertible by assumption, so by the continuous mapping

theorem:
-1

1 <& A
<n§jx,-x;) SOk = BoB+Qxk-0=B,
i=1
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Consistency of OLS

Theorem (Consistency of OLS)

Under the linear projection model and i.i.d. data, 8 is consistent for B.

« Simple proof, but powerful result.

- OLS consistently estimates the linear projection coefficients, B.

+ No guarantees about what the g; represent!
+ Best linear approximation to E[Y | X].
+ If we have a linear CEF, then it’s consistent for the CEF coefficients.

+ Valid with no restrictions on Y: could be binary, discrete, etc.

- Not guaranteed to be unbiased (unless CEF is linear, as we'll see...)
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E [}, Zn:g(x,-)} =E[g(X;)] var [,17 Z":g(xf)} _ var[i(xf)]

« CLT implies:

n
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Central limit theorem, reminders

+ We'll want to approximate the sampling distribution ofﬁ. CLT!

+ Consider some sample mean of i.i.d. data: n—* Z;’:lg(x,-). We have:

E “ Zn:g(xi)] = E[g(X;)] var [,17 Z":g(xf)} _ var[g(X;)]

n

« CLT implies:
Jn (rl] z":g(x,) - [E[g(X,-)]) 5 (0, var(g(X,)])
i=1

- If E[g(X;)] = 0, then we have
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Standardized estimator

-1
~ 1 1 &
Vn(B—B)= |- X X; = X;e;
(B—B)= |~ Zl 7 Zl
- Remember that (n* 7 | X;X/)~? it Qxx SO we have
2 1 <&
Vn(B—B)~Qxk | — X;e
(B-F) ~ @ | 77 2

- What about n /23" | X;e;? Notice that:
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Standardized estimator

=l

ﬁ(ﬁ—p> = (ii&&’) (\}E ixiei)

- Remember that (n* 7 | X;X/)~? it Qxx SO we have
2 1 <&
\/E = ~ Q71 — X,-e,
(p p) XX \/E ;:1:

- What about n /23" | X;e;? Notice that:

n13" | X;e is a sample average with E[X;e,] = 0.
+ Rewrite as /n times an average of i.i.d. mean-zero random vectors.

. Let Q = E[e?X;X!] and apply the CLT:

(IZX )-mron)
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Asymptotic normality

Theorem (Asymptotic Normality of OLS)

Under the linear projection model,

Vi (B—B) 5 N (0,Vp),
where,

Vg = QxkQQxk = (E[XX/)) ™ E[e2X,X;] (E[X,X/])”"

- B is approximately normal with mean g and variance V= QxxQ2Qxx/n
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Asymptotic normality

Theorem (Asymptotic Normality of OLS)

Under the linear projection model,

Vi (B—B) 5 N(0,Vp),

where,
Vg = QxkQQxk = (E[XX/)) ™ E[e2X,X;] (E[X,X/])”"

- B is approximately normal with mean g and variance V= QxxQ2Qxx/n
* V5 =Vg/nisthe asymptotic covariance matrix of g

-+ Square root of the diagonal of V’; = standard errors forﬁj

« Allows us to formulate (approximate) confidence intervals, tests.
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Estimating OLS variance
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» Replace Qux = E[X;X/] with Qex = n ' 37, X, X] = X'%/n.
- Replace @ = E[eX,X/] with @ = n" ' Y7 | &X,X

« Putting these together to get a consistent estimator:
1

.= (Lex)” (Ls~exx ) (Lex) Bv

i=1

- Approximate variance of the coefficients:
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Estimating OLS variance

~ d
Vn(B—B) = N(0,Vp),  Vp=QxQQxk
« Estimation of V uses plug-in estimators.

» Replace Qux = E[X;X/] with Qex = n ' 37, X, X] = X'%/n.
- Replace Q = E[e?X,X/] with @ = n1 3" &XX]

« Putting these together to get a consistent estimator:
1

_ Lo (1 & v v ) (Lo P
vp:(gx@ ;Ze,x,x, (Exx) = Vg

i=1

- Approximate variance of the coefficients:
V; = 7v}B (Z &x, X’) xR

- Square root of the diagonal of Vﬁ: heteroskedasticity-consistent (HC)
SEs (aka “robust SEs”)
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Homoskedasticity

Assumption: Homoskedasticity

The variance of the error terms is constant in X, E[e? | X] = 0?(X) = o2

Heteroskedastic Homoskedastic
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Consequences of homoskedasticity
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1 N ~ 1 i 1
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- Estimated variance of B under homoskedasticity

-1
1 = = 1 1< 1

2 = E 2 m_— —g2 75 X! = s2 (X

= 2 € V‘3 P (”,—_1 X,X,) 5% (X'K)

N a P = 5 9
+ LLN implies s2 — o2 and so nv};m is consistent for V};’“

17/51



Notes on skedasticity

+ Homoskedasticity: strong assumption that isn’t needed for consistency.

18/51



Notes on skedasticity

+ Homoskedasticity: strong assumption that isn’t needed for consistency.

-+ Software: almost always reports \7%’“ by default.

18/51



Notes on skedasticity

+ Homoskedasticity: strong assumption that isn’t needed for consistency.
-+ Software: almost always reports \7%’“ by default.

- e.g. lm() in R or reg in Stata.

18/51



Notes on skedasticity

+ Homoskedasticity: strong assumption that isn’t needed for consistency.
-+ Software: almost always reports \7%’“ by default.
- e.g. lm() in R or reg in Stata.

- Separate commands for HC SEs \7ﬁ

18/51



Notes on skedasticity

+ Homoskedasticity: strong assumption that isn’t needed for consistency.
-+ Software: almost always reports \7%’“ by default.
- e.g. lm() in R or reg in Stata.

- Separate commands for HC SEs \7ﬁ

+ Use {sandwich} package in R or ,robust in Stata.

18/51



Notes on skedasticity

+ Homoskedasticity: strong assumption that isn’t needed for consistency.
-+ Software: almost always reports \7%’“ by default.
- e.g. lm() in R or reg in Stata.

- Separate commands for HC SEs \7;3

+ Use {sandwich} package in R or ,robust in Stata.

o If \7};" and \A/p» differ a lot, maybe check modeling assumptions (King and
Roberts, PA 2015)

18/51



Notes on skedasticity

+ Homoskedasticity: strong assumption that isn’t needed for consistency.
-+ Software: almost always reports \7%’“ by default.
- e.g. lm() in R or reg in Stata.

- Separate commands for HC SEs \7ﬁ

+ Use {sandwich} package in R or ,robust in Stata.

o If \7}2‘" and \A/ﬁ differ a lot, maybe check modeling assumptions (King and
Roberts, PA 2015)

« Lots of “flavors” of HC variance estimators (HCO, HC1, HC2, etc).

18/51



Notes on skedasticity

+ Homoskedasticity: strong assumption that isn’t needed for consistency.
-+ Software: almost always reports \7}’“ by default.
- e.g. lm() in R or reg in Stata.

- Separate commands for HC SEs \7ﬁ

+ Use {sandwich} package in R or ,robust in Stata.

o If \7}2‘" and \A/ﬁ differ a lot, maybe check modeling assumptions (King and
Roberts, PA 2015)

« Lots of “flavors” of HC variance estimators (HCO, HC1, HC2, etc).

+ Mostly small, ad hoc changes to improve finite-sample performance.
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library(sandwich)

mod <- 1m(logpgp95 ~ avexpr + lat_abst + meantemp, data = ajr)

vcov(mod)

#it (Intercept) avexpr lat_abst meantemp
## (Intercept) 0.9079 -0.040952 -0.537463 -0.023246
## avexpr -0.0410 0.004162 -0.000778 0.000605
## lat_abst -0.5375 -0.000778 0.867588 0.016717
## meantemp -0.0232 0.000605 0.016717 0.000705
sandwich: :vcovHC(mod, type = "HC2")

## (Intercept) avexpr lat_abst meantemp
## (Intercept) 0.9764 -0.05735 -0.29548 -0.024639
## avexpr -0.0573 0.00538 -0.00358 0.001107
## lat_abst -0.2955 -0.00358 0.60821 0.008792

## meantemp -0.0246 0.00111 0.00879 0.000706
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Inference with OLS

« Inference is basically the same as any asymptotically normal estimator.
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Inference with OLS

« Inference is basically the same as any asymptotically normal estimator.
- Let §E(/§j) be the estimated SE for,éj.
+ Square root of jth diagonal entry: [\T}jj

+ Hypothesis test of B; = by:

.. B—h L 3,
general t-statistic = ’Q “usual” t-statistic = A‘Bﬁ
56(B)) se(B))

+ Use same critical values from the normal as usual z,, = 1.96.

+ 95% (asymptotic) confidence interval for ﬁj:

[B; —1.96 58(B)), B; +1.96 56(B))]

« Software often uses t critical values instead of normal (we'll see why).
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Inference with Tmtest: :coeftest()

library(lmtest)

mtest::coeftest(mod)

#H

## t test of coefficients:

#H#

it Estimate Std. Error t value Pr(>[t|)

## (Intercept) 6.9289 0.9528 7.27 1.2e-09 x**
## avexpr 0.4059 0.0645 6.29 5.1e-08 x**
## lat_abst -0.1980 0.9314 -0.21 0.832

## meantemp -0.0641 0.0266 -2.41 0.019 *
Hit ---

## Signif. codes:

## 0 'xxx' 0.001 '+«x' 0.01 '<' 0.05 '.' 0.1 ' ' 1

oeftest(mod, vc vcovHC(mod, type

#it

## t test of coefficients:

#it

## Estimate Std. Error t value Pr(>|tl)

## (Intercept)  6.9289 0.9881 7.01 3.3e-09 **x
## avexpr 0.4059 0.0733 5.53 8.6€-07 x*x
## lat_abst -0.1980 0.7799 -0.25 0.801

## meantemp -0.0641 0.0266 -2.41 0.019 *
## ---

## Signif. codes:

## 0 'xxx' 0.001 '+x' 0.01 '+' 0.05 '.' 0.1 ' "1
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3/ Inference for Multiple
Parameters



Inference for interactions

m(x,z) = By + XBy + ZB, + XZPB;,
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m(x,z) = By + XBy + ZB, + XZPB;,

- Partial or marginal effect of X at Z: 272 2 — B, + 2,
+ Estimate it by plugging in the estimated coefficients: Bm(x 2 — B, + 2B,

+ What if we want the variance of this effect for any value of Z?
om(x,z) ~ ~ ~ PR PPN
Y i—% )=V By + 2B = VIB] + 22V[By] + 2zcov[B,, B3]

+ Use the estimated covariance matrix:

g (67ﬁ(x,z)

VA 2V/. V. -
Ox ) - Vﬁ1 T2 Vﬁ3 + 2Z\/ﬁl,53
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Inference for interactions

m(x,z) = By + XBy + ZB, + XZPB;,

- Partial or marginal effect of X at Z: 272 2 — B, + 2,
+ Estimate it by plugging in the estimated coefficients: Bm(x 2 — B, + 2B,

+ What if we want the variance of this effect for any value of Z?

() B+ 7] = WAL+ IR + 2200 B

+ Use the estimated covariance matrix:

o (0m(x,2)\ o " .
v ( Ox ) B Vﬁ1 Tz Vé3 + 22\/&1’5”3
+ V;, is the diagonal entry of V; for B
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Visualizingviamarginaleffects

int_mod <- lm(logpgp95 ~ avexpr * lat_abst + meantemp, data = ajr)
coeftest(int_mod)

##

## t test of coefficients:

##

#it Estimate Std. Error t value Pr(>|t])
## (Intercept) 6.9864 0.9273 7.53 5e-10
## avexpr 0.5491 0.0941 5.84 3e-07
## lat_abst 5.8152 3.0791 1.89 0.0642
## meantemp -0.1048 0.0326 =321 0.0022
## avexpr:lat_abst -0.9095 0.4451 -2.04 0.0458
##

## (Intercept) *kok

## avexpr * Kk

## lat_abst

## meantemp * %

## avexpr:lat_abst =

Ht ---

## Signif. codes:

## 0 "*xx' 0.001 '+x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

23/51



library(marginaleffects)
plot_slopes(int_mod, variables ", condition = "lat_abst")
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Tests of multiple coefficients

m(X,Z) = By + XPy + ZB, + XZB;
+ What about a test of no effect of X ever? Involves 2 coeffcients:

Hy: By =B;s=0
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Tests of multiple coefficients

m(X,Z) = By + XPy + ZB, + XZB;
+ What about a test of no effect of X ever? Involves 2 coeffcients:

Hy:Bi=B;3=0

- Alternative: H, : B; #0or B; £ 0
+ We would like a test statistic that is large when the null is implausible.

- What about 82 + 22
- Distribution depends on the variance/covariance of the coefficients.
-+ Need to normalize like the t-statistic.
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Alternative test for one coefficient

* Usually t-test of H, : B; = b, based on the t-statistic:

B~ by
Se(B)

=
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Alternative test for one coefficient

* Usually t-test of H, : B; = b, based on the t-statistic:

B~ by
se(B)

=

+ Reject when |t| > ¢ for some critical value ¢ from the standard normal.

- Equivalent test based rejects when t? > ¢?

2

2 (réf_bO>2 n (B — bo)

Vgl Vgl
- Because t > N(0,1), we'll have ¢ converging to a x3 distribution

« Reminder: x; is the sum of k squared standard normals.
- Could get the critical value for t? directly from x3.
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- Estimated version of the constraint: LB

+ By the Delta method, under the null hypothesis we have
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Rewriting hypotheses with matrices

+ We can rewrite the null hypothesis as H, : LB = c where,

+ L has g rows or restriction and k + 1 columns (one for each coefficient)
- Estimated version of the constraint: LB

+ By the Delta method, under the null hypothesis we have
Vi (LB —LB) % N(0,L'V,L).
- In this case:
ﬁl d 0
vl |5 - N
Bs 0

« If this covariance matrix where identity, then these would be standard
normal and B? + 33 would be x3 under the null

Velny  [Velug
[Velizy [Vl

)
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Wald statistic
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Wald statistic

+ Under the null, v/a (LB — c) 5 N(0,L'VyL)
- (Lﬁ — c)’(Lﬁ —c) is the squared deviations from the null.

+ Problem: doesn't account for variance/covariance of the estimated
coefficients.

- Wald statistic normalize by the covariance matrix:
P ’ = —1 P
W=n(LB—c) (L'VgL) (LB—c)

+ Similar to dividing by the SE for the t-test
- Squared distance of observed values from the null, weighted by the
distribution of the parameters under the null

28/51



Weighting by the distribution
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W=n(LB—c) (LVsL) (LB—c)

+ Asymptotically under the null W ixf, where g is rows of L
+ g isthe number of linear restrictions in the null

+ Wald test: reject when W > w,, where P(W > w,) = o under the null.
+ Use Xi distribution for critical values, p-values

« Typical software output: F-statistic F = W /q

+ p-values and critical values come from F distribution with g and

n—k—1dfs. ,
* Asn— oo, F, , 4 1 — X3 S0 asymptotically similar to Wald under

homoskedascity (slightly more conservative).
+ No justification for F test under heteroskedasticity.
« “Usual” F-test reports test of all coef = 0 except intercept (pointless?)
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Wald test steps

1. Choose a Type | error rate, a.
- Same interpretation: rate of false positives you are willing to accept
2. Calculate the rejection region for the test (one-sided)

- Rejection region is the region W > w, such that P(W > w,) = a
+ We can get this from R using the qchisq() function

3. Reject if observed statistic is bigger than critical value

+ Use pchisq() to get p-values if needed.
+ When applied to a single coefficient, equivalent to a t-test.

« Use packages like {Imtest} or {clubSandwich} inR.
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Wald testin Lmtest

restricted <- lm(logpgp95 ~ lat_abst + meantemp, data = ajr)

Imtest::waldtest(restricted, int_mod, test = "Chisq",
vcov = vcovHC)

## Wald test

#t

## Model 1: logpgp95 ~ lat_abst + meantemp

## Model 2: logpgp95 ~ avexpr * lat_abst + meantemp
#it Res.Df Df Chisq Pr(>Chisq)

Ht 1 57

#t 2 55 2 34.2 3.7e-08 **x*

Ht ---

## Signif. codes:

## 0 "*xx' 0.001 'xx' 0.01 '+' 0.05 '.' 0.1 ' ' 1
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Multiple testing

* Separate t-tests for each B;: a of them will be significant by chance.
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Multiple testing

* Separate t-tests for each B;: a of them will be significant by chance.

« Illustration:

+ Randomly draw 21 variables independently.
+ Run a regression of the first variable on the rest.

+ By design, no effect of any variable on any other.
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Multiple test example

noise <- data.frame(matrix(rnorm(2100), nro 100, ncol = 21))
summary(lm(noise))

H#

## Coefficients:

## Estimate Std. Error t value Pr(>[tl)
## (Intercept) -0.028039 0.113820 =25 0.8061
## X2 -0.150390 0.112181 -1.34 0.1839
## X3 0.079158 0.095028 0.83 0.4074
#H# X4 -0.071742 0.104579 -0.69 0.4947
## X5 0.172078 0.114002 il 5il 0.1352
## X6 0.080852 0.108341 0.75 0.4577
## X7 0.102913 0.114156 0.90 0.3701
## X8 -0.321053 0.120673 -2.66 0.0094 **
## X9 -0.053122 0.107983 -0.49 0.6241
## X10 0.180105 0.126443 1.42 0.1583
## X11 0.166386 0.110947 1.50 0.1377
## X12 0.008011 0.103766 0.08 0.9387
## X13 0.000212 0.103785 0.00 0.9984
## X14 -0.065969 0.112214 SORSE) 0.5583
## X15 -0.129654 0.111575 =il 0.2487
## X16 -0.054446 0.125140 -0.44 0.6647
## X17 0.004335 0.112012 0.04 0.9692
## X18 -0.080796 0.109853 -0.74 0.4642
## X19 -0.085806 0.118553 -0.72 0.4713
## X20 -0.186006 0.104560 -1.78 0.0791 .
## X21 0.002111 0.108118 0.02 0.9845
## ---

## Signif. codes:

## 0 'xxx' 0.001 '+x' 0.01 '+' 0.05 '.' 0.1 ' "1
#i#

## Residual standard error: 0.999 on 79 degrees of freedom
## Multiple R-squared: 0.201, Adjusted R-squared: -0.00142

## F-statistic: 0.993 on 20 and 79 DF, p-value: 0.48
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Multiple testing gives false positives

+ 1 out of 20 variables significant at a = 0.05

- 2 out of 20 variables significant at o = 0.1

« Exactly the number of false positives we would expect.

+ But notice the F-statistic: the variables are not jointly significant

- Bonferroni correction: use p-value cutoff a/m where m is the number
of hypotheses.

+ Example: 0.05/20 = 0.0025
- Ensures that the family-wise error rate (probability of making at least 1
Type | error) is less than a.

35/51



4] Linear Regression
Model and Finite-sample
Properties



Standard linear regression model

+ Standard textbook model: correctly specified linear CEF
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Standard linear regression model

+ Standard textbook model: correctly specified linear CEF

+ Designed for finite-sample results.
Assumption: Linear Regression Model

1. The variables (Y, X) satisfy the the linear CEF assumption.

Y=XB+e
Ele | X] = 0.

2. The design matrix is invertible E[XX’] > 0 (positive definite).

« Basically this assumes the CEF of Y given X is linear.

+ We continue to maintain {(Y;, X;)} are i.i.d.
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Properties of OLS under linear CEF

« Linear CEFs imply stronger finite-sample guarantees:
1. Unbiasedness: £ [8 | x| = B

2. Conditional sampling variance: let o7 = E[e? | X|]

VB | %] = (Z&xx) )

« Useful when linearity holds by default (discrete X in experiments, etc)
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Linear CEF under homoskedasticity

« Under homoskedasticity, we have a few other finite-sample results:
3. Conditional sampling variance: V[ | %] = o2 (X'%)""
4. Unbiased variance estimator: £ [V°[8] | X] = o2(X'%)

5. Gauss-Markov: OLS is the best linear unbiased estimator of B (BLUE). If
B is a linear estimator,

VIB | K] > VIB| %] = o2 (X'%)"

-+ For matrices, A > B means that A — B is positive semidefinite.

+ A matrix Cis p.s.d. if x’"Cx > 0.
+ Upshot: OLS will have the smaller SEs than any other linear estimator.
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Normal regression model

+ Most parametric: Y ~ N (X'B,c2).
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Normal regression model

+ Most parametric: Y ~ N (X'B,c2).

+ Normal error model since e = Y — X'B ~ N (0,02).

Rarely believed, but allows for exact inference for all n.

o (,éj —ﬁj)/§é([§j) follows a t distribution with n — k degrees of freedom.
« F statistics follows F distribution exactly rather than approximately.

- Software often implicitly assumes this for p-values.

+ With reasonable n, asymptotic normality has the same effect.
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5/ Clustering



Clustered dependence: intuition

+ Think back to the Gerber, Green, and Larimer (2008) social pressure
mailer example.
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Clustered dependence: intuition

+ Think back to the Gerber, Green, and Larimer (2008) social pressure
mailer example.

+ Randomly assign households to different treatment conditions.
+ But the measurement of turnout is at the individual level.

« Zero conditional mean error holds here (random assignment)
+ Violation of iid/random sampling:

- errors of individuals within the same household are correlated.
+ SEs are going to be wrong.

+ Called clustering or clustered dependence

40 /51



Clustered dependence: notation

+ Clusters (groups): g =1,...,m
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Clustered dependence: notation

+ Clusters (groups): g =1,...,m
* Units:i=1,...,n,

* n, is the number of units in cluster g
* n=3" ngisthe total number of units

« Units are (usually) belong to a single cluster:

- voters in households
- individuals in states
+ students in classes

+ rulings in judges

+ Outcome varies at the unit-level, Y;, and the main independent
variable varies at the cluster level, X,.
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Clustered dependence: example model

\/ig = ﬁO + Xgﬁl + Vig
= ﬁo + Xgﬁl = Cg + U,-g

* u;, unit error component with Vu,|X,] = o
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Clustered dependence: example model

\/ig = ﬁO + Xgﬁl + Vig
= ,30 + Xgﬁl = Cg + U,-g
* u;, unit error component with Vu,|X,] = o
- ¢, cluster error component with V[c,|X,] = o2
* ¢, and u;, are assumed to be independent of each other.
© Vvl X, ] = o2+ 02

« What if we ignore this structure and just use v,, as the error?
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Lack of independence

+ Covariance between two units i and s in the same cluster:

COV[Vigv Vs ] = 0'5
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Lack of independence

+ Covariance between two units i and s in the same cluster:

COV[Vigv Vs ] = 0'3

- Correlation between units in the same group is called the intra-class
correlation coefficient, or p_:

o¢

Corlv,,, v,,] = ==
‘€8 02402

=Pc

+ Zero covariance of two units i and s in different clusters g and k:

Cov[vy,, vl = 0

1
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Example covariance matrix
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v —[V1,1 Vou Va1 Vap Vs V6,2]

44 [ 51



Example covariance matrix

. g
v —[V1,1 Vou Va1 Vap Vs V6,2]

+ Variance matrix under clustering:

44 [ 51



Example covariance matrix

. g
v —[V1,1 Vou Va1 Vap Vs V6,2]

+ Variance matrix under clustering:

N

o+ o’ o? o? 0 0 0
0?2 o2+ o2 OF 0 0 0
o? o? o2 +02 0 0 0
Yxi= g 0 0 otte? o o2
c u c c
0 0 0 o? o2+ 02 o?
0 0 0 o? o? o+ o’
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v = [ Vit Vo1 W31

+ Variance matrix under clustering:

+ Variance matrix under i.i.d.:

© oo o oY%
o oo o %Yo
o oo Yoo
oo fWo oo
o %o o oo

B o oo oo

V[v|X] = l
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Effects of clustering
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Effects of clustering

Yig :B0+Xgﬁ1 +Cg+ uig

- V0[3,] = conventional OLS variance assuming i.i.d./homoskedasticity.
- Let V[B,] be the true sampling variance under clustering.

« When clusters are balanced, n* = Ng, comparison of clustered to
conventional:

W[ﬁl] ~ VO[BI] (1+(r =1)p.)

« True variance will be higher than conventional when within-cluster
correlation is positive, p. > 0.
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Linear model with clustering

Xllgp + V/g
+ Assumptions:

* [E[v,, | X;;] = 0 s0 we have the correct CEF.

© E[v, Ve | Xigs X/l =0unless g = g’

- Correlated errors allowed within groups, uncorrelated across. Allows
heteroskedasticity.

+ Pooled OLS under clustered dependence:

Yo =XP+vg

* Y, isthe n, x 1 vector of responses for cluster g
* X, isthe n, x k matrix of data for the gth cluster.

» We can write the OLS estimator as:

() (S
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Cluster-robust variance estimator

+ Independence is across clusters so the CLT holds as m gets big.

+ Key intuition: we're sampling clusters, not individual units.

- CLT implies \/m(B — B) will be asymp. normal with mean 0 and variance:

(EDR%g]) ElRpvpvy k) (EXp%,])

+ Similar to the iid case, replace population quantities with sample
versions (and divide by m):

\/CLo _ 1o o -1
Vﬁ (nggg g) XX)

- Noting: XX/m—m*IZg L KR,

+ With small-sample adjustment (reported by most software):

g mon G
Vﬁ1_m—1n— (ng”g>(xx)
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Example: Gerber, Green, Larimer

Dear Registered Voter:
WHAT IF YOUR NEIGHBORS KNEW WHETHER YOU VOTED?

Why do so many people fail to vote? We've been talking about the problem for
years, but it only seems to get worse. This year, we're taking a new approach.
We're sending this mailing to you and your neighbors to publicize who does and
does not vote.

The chart shows the names of some of your neighbors, showing which have voted in
the past. After the August B election, we intend o mail an updated chart. You
and your neighbors will all know who voted and who did not.

DO YOUR CIVIC DUTY —WVOTE!

MAPLE DR Aug 04
9995 JOSEPH JAMES SMITH Voted
9995 JENNIFER KAY SMITH

9997 RICHARD B JACKSON

9999 KATHY MARIE JACKSON

i
111
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Social pressure model

load("../assets/gerber_green_larimer.RData"
library(lmtest)
social$voted <- 1 * (social$voted == "Yes")

social$treatment <- factor(
social$treatment,

levels = c("Control", "Hawthorne", "Civic Duty", "Neighbors", "Self")
)
modl <- lm(voted ~ treatment, data = social)
coeftest(modl)
#t
## t test of coefficients:
H
i Estimate Std. Error t value
## (Intercept) 0.29664 0.00106 279.53
## treatmentHawthorne 0.02574 0.00260 9.90
## treatmentCivic Duty 0.01790 0.00260 6.88
## treatmentNeighbors 0.08131 0.00260 31.26
## treatmentSelf 0.04851 0.00260 18.66
##t Pr(>|tl)
## (Intercept) < 2e-16 *x*
## treatmentHawthorne < 2e-16 **x*
## treatmentCivic Duty 5.8e-12 #*x
## treatmentNeighbors < 2e-16 x*xx*
## treatmentSelf < 2e-16 *xx
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ial pressure model, CRSEs

library(sandw

coeftest(modl, v , cluster = social$hh_id))
##

## t test of coefficients:

##

#it Estimate Std. Error t value
## (Intercept) 0.29664 0.00131 226.52
## treatmentHawthorne 0.02574 0.00326 7.90
## treatmentCivic Duty 0.01790 0.00324 5,53
## treatmentNeighbors  0.08131 0.00337  24.13
## treatmentSelf 0.04851 0.00330 14.70
## Pr(>|tl])

## (Intercept) < 2e-16 *xx

## treatmentHawthorne 2.8e-15 **x*
## treatmentCivic Duty 3.2e-08 ***
## treatmentNeighbors < 2e-16 ***
## treatmentSelf < 2e-16 **%*
## ---
## Signif. codes:
## 0 '+**xx' 0.001 '"*x' 0.01 '+' 0.05 '.' 0.1 " ' 1
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Cluster-robust standard errors

- CRSE do not change our estimates B, cannot fix bias
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Cluster-robust standard errors

+ CRSE do not change our estimates ﬁ, cannot fix bias

« Valid under clustered dependence when main variable is constant
within cluster

+ Relies on independence between clusters
+ Allows for arbitrary dependence within clusters
+ CRSEs usually > conventional SEs—use when you suspect clustering

* When Xj, not constant within cluster, but just correlated ~~ more
complicated.

- See Abadie, Athey, Imbens, and Wooldridge (2021).

« Consistency of the CRSE are in the number of groups, not the number
of individuals

+ CRSEs can be incorrect with a small (< 50 maybe) number of clusters
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