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Where are we? Where are we going?

• Before: learned about CEFs and linear projections in the population.

• Last time: OLS estimator, its algebraic properties.

• Now: its statistical properties, both finite-sample and asymptotic.
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Acemoglu, Johnson, and Robinson (2001)
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Sampling distribution of the OLS estimator

• OLS is an estimator—we plug data into and we get out estimates.

OLS

Sample 1: {(𝘠𝟣, 𝘟𝟣), … , (𝘠𝘯, 𝘟𝘯)} ( ̂𝛽𝟢, ̂𝛽𝟣)𝟣

Sample 2: {(𝘠𝟣, 𝘟𝟣), … , (𝘠𝘯, 𝘟𝘯)} ( ̂𝛽𝟢, ̂𝛽𝟣)𝟤

⋮ ⋮
Sample 𝘬 − 𝟣: {(𝘠𝟣, 𝘟𝟣), … , (𝘠𝘯, 𝘟𝘯)} ( ̂𝛽𝟢, ̂𝛽𝟣)𝘬−𝟣

Sample 𝘬 : {(𝘠𝟣, 𝘟𝟣), … , (𝘠𝘯, 𝘟𝘯)} ( ̂𝛽𝟢, ̂𝛽𝟣)𝘬

• Just like the sample mean or sample difference in means
• Has a sampling distribution, with a sampling variance/standard error.
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Simulation procedure

• Let’s take a simulation approach to demonstrate:

• Pretend that the AJR data represents the population of interest
• See how the line varies from sample to sample

1. Draw a random sample of size 𝘯 = 𝟥𝟢 with replacement using
sample()

2. Use lm() to calculate the OLS estimates of the slope and intercept
3. Plot the estimated regression line
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Population Regression
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Randomly sample from AJR

1 2 3 4 5 6 7 8

6

7

8

9

10

11

12

Log Settler Mortality

Lo
g 

GD
P 

pe
r c

ap
ita

7 / 51



Randomly sample from AJR

1 2 3 4 5 6 7 8

6

7

8

9

10

11

12

Log Settler Mortality

Lo
g 

GD
P 

pe
r c

ap
ita

7 / 51



Randomly sample from AJR

1 2 3 4 5 6 7 8

6

7

8

9

10

11

12

Log Settler Mortality

Lo
g 

GD
P 

pe
r c

ap
ita

7 / 51



Randomly sample from AJR

1 2 3 4 5 6 7 8

6

7

8

9

10

11

12

Log Settler Mortality

Lo
g 

GD
P 

pe
r c

ap
ita

7 / 51



Randomly sample from AJR

1 2 3 4 5 6 7 8

6

7

8

9

10

11

12

Log Settler Mortality

Lo
g 

GD
P 

pe
r c

ap
ita

7 / 51



Randomly sample from AJR

1 2 3 4 5 6 7 8

6

7

8

9

10

11

12

Log Settler Mortality

Lo
g 

GD
P 

pe
r c

ap
ita

7 / 51



Randomly sample from AJR

1 2 3 4 5 6 7 8

6

7

8

9

10

11

12

Log Settler Mortality

Lo
g 

GD
P 

pe
r c

ap
ita

7 / 51



Big picture

• We want finite-sample guarantees about our estimates.

• Unbiasedness, exact sampling distribution, etc.

• But finite-sample results come at a price in terms of assumptions.

• Unbiasedness: CEF is linear.
• Exact sampling distribution: normal errors.

• Asymptotic results hold under much weaker assumptions, but require
more data.

• OLS consistent for the linear projection even with nonlinear CEF.
• Asymptotic normality for sampling distribution under mild assumptions.

• Focus on two models:

• Linear projection model for asymptotic results.
• Linear regression/CEF model for finite samples.

8 / 51



Big picture

• We want finite-sample guarantees about our estimates.

• Unbiasedness, exact sampling distribution, etc.

• But finite-sample results come at a price in terms of assumptions.

• Unbiasedness: CEF is linear.
• Exact sampling distribution: normal errors.

• Asymptotic results hold under much weaker assumptions, but require
more data.

• OLS consistent for the linear projection even with nonlinear CEF.
• Asymptotic normality for sampling distribution under mild assumptions.

• Focus on two models:

• Linear projection model for asymptotic results.
• Linear regression/CEF model for finite samples.

8 / 51



Big picture

• We want finite-sample guarantees about our estimates.

• Unbiasedness, exact sampling distribution, etc.

• But finite-sample results come at a price in terms of assumptions.

• Unbiasedness: CEF is linear.
• Exact sampling distribution: normal errors.

• Asymptotic results hold under much weaker assumptions, but require
more data.

• OLS consistent for the linear projection even with nonlinear CEF.
• Asymptotic normality for sampling distribution under mild assumptions.

• Focus on two models:

• Linear projection model for asymptotic results.
• Linear regression/CEF model for finite samples.

8 / 51



Big picture

• We want finite-sample guarantees about our estimates.

• Unbiasedness, exact sampling distribution, etc.

• But finite-sample results come at a price in terms of assumptions.

• Unbiasedness: CEF is linear.

• Exact sampling distribution: normal errors.

• Asymptotic results hold under much weaker assumptions, but require
more data.

• OLS consistent for the linear projection even with nonlinear CEF.
• Asymptotic normality for sampling distribution under mild assumptions.

• Focus on two models:

• Linear projection model for asymptotic results.
• Linear regression/CEF model for finite samples.

8 / 51



Big picture

• We want finite-sample guarantees about our estimates.

• Unbiasedness, exact sampling distribution, etc.

• But finite-sample results come at a price in terms of assumptions.

• Unbiasedness: CEF is linear.
• Exact sampling distribution: normal errors.

• Asymptotic results hold under much weaker assumptions, but require
more data.

• OLS consistent for the linear projection even with nonlinear CEF.
• Asymptotic normality for sampling distribution under mild assumptions.

• Focus on two models:

• Linear projection model for asymptotic results.
• Linear regression/CEF model for finite samples.

8 / 51



Big picture

• We want finite-sample guarantees about our estimates.

• Unbiasedness, exact sampling distribution, etc.

• But finite-sample results come at a price in terms of assumptions.

• Unbiasedness: CEF is linear.
• Exact sampling distribution: normal errors.

• Asymptotic results hold under much weaker assumptions, but require
more data.

• OLS consistent for the linear projection even with nonlinear CEF.
• Asymptotic normality for sampling distribution under mild assumptions.

• Focus on two models:

• Linear projection model for asymptotic results.
• Linear regression/CEF model for finite samples.

8 / 51



Big picture

• We want finite-sample guarantees about our estimates.

• Unbiasedness, exact sampling distribution, etc.

• But finite-sample results come at a price in terms of assumptions.

• Unbiasedness: CEF is linear.
• Exact sampling distribution: normal errors.

• Asymptotic results hold under much weaker assumptions, but require
more data.

• OLS consistent for the linear projection even with nonlinear CEF.

• Asymptotic normality for sampling distribution under mild assumptions.

• Focus on two models:

• Linear projection model for asymptotic results.
• Linear regression/CEF model for finite samples.

8 / 51



Big picture

• We want finite-sample guarantees about our estimates.

• Unbiasedness, exact sampling distribution, etc.

• But finite-sample results come at a price in terms of assumptions.

• Unbiasedness: CEF is linear.
• Exact sampling distribution: normal errors.

• Asymptotic results hold under much weaker assumptions, but require
more data.

• OLS consistent for the linear projection even with nonlinear CEF.
• Asymptotic normality for sampling distribution under mild assumptions.

• Focus on two models:

• Linear projection model for asymptotic results.
• Linear regression/CEF model for finite samples.

8 / 51



Big picture

• We want finite-sample guarantees about our estimates.

• Unbiasedness, exact sampling distribution, etc.

• But finite-sample results come at a price in terms of assumptions.

• Unbiasedness: CEF is linear.
• Exact sampling distribution: normal errors.

• Asymptotic results hold under much weaker assumptions, but require
more data.

• OLS consistent for the linear projection even with nonlinear CEF.
• Asymptotic normality for sampling distribution under mild assumptions.

• Focus on two models:

• Linear projection model for asymptotic results.
• Linear regression/CEF model for finite samples.

8 / 51



Big picture

• We want finite-sample guarantees about our estimates.

• Unbiasedness, exact sampling distribution, etc.

• But finite-sample results come at a price in terms of assumptions.

• Unbiasedness: CEF is linear.
• Exact sampling distribution: normal errors.

• Asymptotic results hold under much weaker assumptions, but require
more data.

• OLS consistent for the linear projection even with nonlinear CEF.
• Asymptotic normality for sampling distribution under mild assumptions.

• Focus on two models:

• Linear projection model for asymptotic results.

• Linear regression/CEF model for finite samples.

8 / 51



Big picture

• We want finite-sample guarantees about our estimates.

• Unbiasedness, exact sampling distribution, etc.

• But finite-sample results come at a price in terms of assumptions.

• Unbiasedness: CEF is linear.
• Exact sampling distribution: normal errors.

• Asymptotic results hold under much weaker assumptions, but require
more data.

• OLS consistent for the linear projection even with nonlinear CEF.
• Asymptotic normality for sampling distribution under mild assumptions.

• Focus on two models:

• Linear projection model for asymptotic results.
• Linear regression/CEF model for finite samples.

8 / 51



1/ Linear projection model
and Large-sample
Properties



Linear projection model

• We’ll start at the most broad, fewest assumptions

Linear projection model

1. For the variables (𝘠 , 𝗫), we assume the linear projection of 𝘠 on 𝗫 is
defined as:

𝘠 = 𝗫′𝜷 + 𝘦
𝔼[𝗫𝘦] = 𝟢.

2. The design matrix is invertible, so 𝔼[𝗫𝘪𝗫′
𝘪 ] > 𝟢 (positive definite).

• Linear projection model holds under very mild assumptions.

• Remember: not even assuming linear CEF!
• Implies coefficients are 𝜷 = (𝔼[𝗫𝗫′])−𝟣𝔼[𝗫𝘠 ]

• What properties can we derive under such weak assumptions?
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A very useful decomposition

̂𝜷 = ( 𝟣
𝘯

𝘯
∑
𝘪=𝟣

𝗫𝘪𝗫′
𝘪 )

−𝟣

( 𝟣
𝘯

𝘯
∑
𝘪=𝟣

𝗫𝘪𝘠𝘪) = 𝜷 + ( 𝟣
𝘯

𝘯
∑
𝘪=𝟣

𝗫𝘪𝗫′
𝘪 )

−𝟣

( 𝟣
𝘯

𝘯
∑
𝘪=𝟣

𝗫𝘪𝘦𝘪)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

estimation error

• OLS estimates are the truth plus some estimation error.

• Most of what we derive about OLS comes from this view.
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Consistency of OLS

Theorem (Consistency of OLS)

Under the linear projection model and i.i.d. data, ̂𝜷 is consistent for 𝜷.

• Simple proof, but powerful result.

• OLS consistently estimates the linear projection coefficients, 𝜷.

• No guarantees about what the 𝛽𝘫 represent!
• Best linear approximation to 𝔼[𝘠 ∣ 𝗫].
• If we have a linear CEF, then it’s consistent for the CEF coefficients.

• Valid with no restrictions on 𝘠 : could be binary, discrete, etc.

• Not guaranteed to be unbiased (unless CEF is linear, as we’ll see…)
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Central limit theorem, reminders
• We’ll want to approximate the sampling distribution of ̂𝜷. CLT!

• Consider some sample mean of i.i.d. data: 𝘯−𝟣 ∑𝘯
𝘪=𝟣 𝘨(𝗫𝘪 ). We have:

𝔼 [ 𝟣
𝘯

𝘯
∑
𝘪=𝟣

𝘨(𝗫𝘪 )] = 𝔼[𝘨(𝗫𝘪 )] var[ 𝟣
𝘯

𝘯
∑
𝘪=𝟣

𝘨(𝗫𝘪 )] = var[𝘨(𝗫𝘪 )]
𝘯

• CLT implies:

√𝘯 ( 𝟣
𝘯

𝘯
∑
𝘪=𝟣

𝘨(𝗫𝘪 ) − 𝔼[𝘨(𝗫𝘪 )])
𝘥→ 𝒩(𝟢, var[𝘨(𝗫𝘪 )])

• If 𝔼[𝘨(𝗫𝘪 )] = 𝟢, then we have

√𝘯 ( 𝟣
𝘯

𝘯
∑
𝘪=𝟣

𝘨(𝗫𝘪 )) = 𝟣√𝘯
𝘯

∑
𝘪=𝟣

𝘨(𝗫𝘪 )
𝘥→ 𝒩(𝟢, 𝔼[𝘨(𝗫𝘪 )𝘨(𝗫𝘪 )′])
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Standardized estimator

√𝘯 ( ̂𝜷 − 𝜷) = ( 𝟣
𝘯

𝘯
∑
𝘪=𝟣

𝗫𝘪𝗫′
𝘪 )

−𝟣

( 𝟣√𝘯
𝘯

∑
𝘪=𝟣

𝗫𝘪𝘦𝘪)

• Remember that (𝘯−𝟣 ∑𝘯
𝘪=𝟣 𝗫𝘪𝗫′

𝘪 )−𝟣 𝘱
→ 𝗤−𝟣

𝗫𝗫 so we have

√𝘯 ( ̂𝜷 − 𝜷) ≈ 𝗤−𝟣
𝗫𝗫 ( 𝟣√𝘯

𝘯
∑
𝘪=𝟣

𝗫𝘪𝘦𝘪)

• What about 𝘯−𝟣/𝟤 ∑𝘯
𝘪=𝟣 𝗫𝘪𝘦𝘪? Notice that:

• 𝘯−𝟣 ∑𝘯
𝘪=𝟣 𝗫𝘪 𝘦𝘪 is a sample average with 𝔼[𝗫𝘪 𝘦𝘪 ] = 𝟢.

• Rewrite as
√𝘯 times an average of i.i.d. mean-zero random vectors.

• Let 𝛀 = 𝔼[𝘦𝟤
𝘪 𝗫𝘪𝗫′

𝘪 ] and apply the CLT:

( 𝟣√𝘯
𝘯

∑
𝘪=𝟣

𝗫𝘪𝘦𝘪)
𝘥→ 𝒩(𝟢, 𝛀)
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Asymptotic normality

Theorem (Asymptotic Normality of OLS)

Under the linear projection model,

√𝘯 ( ̂𝜷 − 𝜷) 𝘥→ 𝒩(𝟢, 𝗩𝜷),

where,
𝗩𝜷 = 𝗤−𝟣

𝗫𝗫𝛀𝗤−𝟣
𝗫𝗫 = (𝔼[𝗫𝘪𝗫′

𝘪 ])
−𝟣 𝔼[𝘦𝟤

𝘪 𝗫𝘪𝗫′
𝘪 ] (𝔼[𝗫𝘪𝗫′

𝘪 ])
−𝟣

• ̂𝜷 is approximately normal with mean 𝜷 and variance 𝗩 ̂𝜷 = 𝗤−𝟣
𝗫𝗫𝛀𝗤−𝟣

𝗫𝗫/𝘯

• 𝗩 ̂𝜷 = 𝗩𝜷/𝘯 is the asymptotic covariance matrix of ̂𝜷

• Square root of the diagonal of 𝗩 ̂𝜷 = standard errors for ̂𝛽𝘫

• Allows us to formulate (approximate) confidence intervals, tests.
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2/ OLS variance estimation



Estimating OLS variance
√𝘯 ( ̂𝜷 − 𝜷) 𝘥→ 𝒩(𝟢, 𝗩𝜷), 𝗩𝜷 = 𝗤−𝟣

𝗫𝗫𝛀𝗤−𝟣
𝗫𝗫

• Estimation of 𝗩𝜷 uses plug-in estimators.

• Replace 𝗤𝗫𝗫 = 𝔼[𝗫𝘪 𝗫′
𝘪 ] with �̂�𝗫𝗫 = 𝘯−𝟣 ∑𝘯

𝘪=𝟣 𝗫𝘪 𝗫′
𝘪 = 𝕏′𝕏/𝘯.

• Replace 𝛀 = 𝔼[𝘦𝟤
𝘪 𝗫𝘪 𝗫′

𝘪 ] with �̂� = 𝘯−𝟣 ∑𝘯
𝘪=𝟣 ̂𝘦𝟤

𝘪 𝗫𝘪 𝗫′
𝘪

• Putting these together to get a consistent estimator:

�̂�𝜷 = ( 𝟣
𝘯 𝕏′𝕏)

−𝟣
( 𝟣

𝘯
𝘯

∑
𝘪=𝟣

̂𝘦𝟤
𝘪 𝗫𝘪𝗫′

𝘪 ) ( 𝟣
𝘯 𝕏′𝕏)

−𝟣 𝘱
→ 𝗩𝜷

• Approximate variance of the coefficients:

�̂� ̂𝜷 = 𝟣
𝘯 �̂�𝜷 = (𝕏′𝕏)−𝟣 (

𝘯
∑
𝘪=𝟣

̂𝘦𝟤
𝘪 𝗫𝘪𝗫′

𝘪 ) (𝕏′𝕏)−𝟣

• Square root of the diagonal of �̂� ̂𝜷: heteroskedasticity-consistent (HC)
SEs (aka “robust SEs”)
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Homoskedasticity

Assumption: Homoskedasticity

The variance of the error terms is constant in 𝗫, 𝔼[𝘦𝟤 ∣ 𝗫] = 𝜎 𝟤(𝗫) = 𝜎 𝟤.
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Consequences of homoskedasticity

• Homoskedasticity implies 𝔼[𝘦𝟤
𝘪 𝗫𝘪𝗫′

𝘪 ] = 𝔼[𝘦𝟤
𝘪 ]𝔼[𝗫𝘪𝗫′

𝘪 ] = 𝜎 𝟤𝗤𝗫𝗫

• Simplifies the expression for the variance of
√𝘯( ̂𝜷 − 𝜷):

𝗩lm
𝜷 = 𝗤−𝟣

𝗫𝗫𝔼[𝘦𝟤
𝘪 ]𝗤𝗫𝗫𝗤−𝟣

𝗫𝗫 = 𝜎 𝟤𝗤−𝟣
𝗫𝗫

• Estimated variance of ̂𝜷 under homoskedasticity

𝘴𝟤 = 𝟣
𝘯 − 𝘬

𝘯
∑
𝘪=𝟣

̂𝘦𝟤
𝘪 �̂�lm

̂𝜷 = 𝟣
𝘯 𝘴𝟤 ( 𝟣

𝘯
𝘯

∑
𝘪=𝟣

𝗫𝘪𝗫′
𝘪 )

−𝟣

= 𝘴𝟤 (𝕏′𝕏)−𝟣

• LLN implies 𝘴𝟤 𝘱
→ 𝜎 𝟤 and so 𝘯�̂�lm

̂𝜷 is consistent for 𝗩lm
𝜷
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Notes on skedasticity

• Homoskedasticity: strong assumption that isn’t needed for consistency.

• Software: almost always reports �̂�lm
̂𝜷 by default.

• e.g. lm() in R or reg in Stata.

• Separate commands for HC SEs �̂� ̂𝜷

• Use {sandwich} package in R or ,robust in Stata.

• If �̂�lm
̂𝜷 and �̂� ̂𝜷 differ a lot, maybe check modeling assumptions (King and

Roberts, PA 2015)

• Lots of “flavors” of HC variance estimators (HC0, HC1, HC2, etc).

• Mostly small, ad hoc changes to improve finite-sample performance.
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AJR data

library(sandwich)
mod <- lm(logpgp95 ~ avexpr + lat_abst + meantemp, data = ajr)
vcov(mod) ## homoskdastic V_\hat{beta}

## (Intercept) avexpr lat_abst meantemp
## (Intercept) 0.9079 -0.040952 -0.537463 -0.023246
## avexpr -0.0410 0.004162 -0.000778 0.000605
## lat_abst -0.5375 -0.000778 0.867588 0.016717
## meantemp -0.0232 0.000605 0.016717 0.000705
sandwich::vcovHC(mod, type = "HC2") ## HC2

## (Intercept) avexpr lat_abst meantemp
## (Intercept) 0.9764 -0.05735 -0.29548 -0.024639
## avexpr -0.0573 0.00538 -0.00358 0.001107
## lat_abst -0.2955 -0.00358 0.60821 0.008792
## meantemp -0.0246 0.00111 0.00879 0.000706
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Inference with OLS
• Inference is basically the same as any asymptotically normal estimator.

• Let ŝe( ̂𝛽𝘫) be the estimated SE for ̂𝛽𝘫 .

• Square root of 𝘫th diagonal entry: √[�̂� ̂𝜷]𝘫 𝘫

• Hypothesis test of 𝛽𝘫 = 𝘣𝟢:

general t-statistic =
̂𝛽𝘫 − 𝘣𝟢

ŝe( ̂𝛽𝘫)
“usual” t-statistic =

̂𝛽𝘫

ŝe( ̂𝛽𝘫)

• Use same critical values from the normal as usual 𝘻𝛼/𝟤 = 𝟣.𝟫𝟨.

• 95% (asymptotic) confidence interval for ̂𝛽𝘫 :

[ ̂𝛽𝘫 − 𝟣.𝟫𝟨 ŝe( ̂𝛽𝘫), ̂𝛽𝘫 + 𝟣.𝟫𝟨 ŝe( ̂𝛽𝘫)]

• Software often uses 𝘵 critical values instead of normal (we’ll see why).

20 / 51



Inference with OLS
• Inference is basically the same as any asymptotically normal estimator.
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• Let ŝe( ̂𝛽𝘫) be the estimated SE for ̂𝛽𝘫 .

• Square root of 𝘫th diagonal entry: √[�̂� ̂𝜷]𝘫 𝘫

• Hypothesis test of 𝛽𝘫 = 𝘣𝟢:

general t-statistic =
̂𝛽𝘫 − 𝘣𝟢
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Inference with lmtest::coeftest()
library(lmtest)
## homoskedastic error
lmtest::coeftest(mod)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.9289 0.9528 7.27 1.2e-09 ***
## avexpr 0.4059 0.0645 6.29 5.1e-08 ***
## lat_abst -0.1980 0.9314 -0.21 0.832
## meantemp -0.0641 0.0266 -2.41 0.019 *
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## HC2 variance estimator
lmtest::coeftest(mod, vcov = vcovHC(mod, type = "HC2"))

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.9289 0.9881 7.01 3.3e-09 ***
## avexpr 0.4059 0.0733 5.53 8.6e-07 ***
## lat_abst -0.1980 0.7799 -0.25 0.801
## meantemp -0.0641 0.0266 -2.41 0.019 *
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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3/ Inference for Multiple
Parameters



Inference for interactions

𝘮(𝘹, 𝘻) = 𝛽𝟢 + 𝘟𝛽𝟣 + 𝘡𝛽𝟤 + 𝘟𝘡𝛽𝟥

• Partial or marginal effect of 𝘟 at 𝘡 : 𝜕𝘮(𝘹,𝘻)
𝜕𝘹 = 𝛽𝟣 + 𝘻𝛽𝟥

• Estimate it by plugging in the estimated coefficients: 𝜕𝘮(𝘹,𝘻)
𝜕𝘹 = ̂𝛽𝟣 + 𝘻 ̂𝛽𝟥

• What if we want the variance of this effect for any value of 𝘡?

𝕍 (𝜕𝘮(𝘹, 𝘻)
𝜕𝘹 ) = 𝕍 [ ̂𝛽𝟣 + 𝘻 ̂𝛽𝟥] = 𝕍[ ̂𝛽𝟣] + 𝘻𝟤𝕍[ ̂𝛽𝟥] + 𝟤𝘻cov[ ̂𝛽𝟣, ̂𝛽𝟥]

• Use the estimated covariance matrix:

�̂� (𝜕𝘮(𝘹, 𝘻)
𝜕𝘹 ) = 𝘝 ̂𝛽𝟣

+ 𝘻𝟤𝘝 ̂𝛽𝟥
+ 𝟤𝘻𝘝 ̂𝛽𝟣 ̂𝛽𝟥

• 𝘝 ̂𝛽𝟣
is the diagonal entry of �̂� ̂𝜷 for ̂𝛽𝟣

22 / 51
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𝘮(𝘹, 𝘻) = 𝛽𝟢 + 𝘟𝛽𝟣 + 𝘡𝛽𝟤 + 𝘟𝘡𝛽𝟥

• Partial or marginal effect of 𝘟 at 𝘡 : 𝜕𝘮(𝘹,𝘻)
𝜕𝘹 = 𝛽𝟣 + 𝘻𝛽𝟥
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𝜕𝘹 = ̂𝛽𝟣 + 𝘻 ̂𝛽𝟥
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𝜕𝘹 ) = 𝕍 [ ̂𝛽𝟣 + 𝘻 ̂𝛽𝟥] = 𝕍[ ̂𝛽𝟣] + 𝘻𝟤𝕍[ ̂𝛽𝟥] + 𝟤𝘻cov[ ̂𝛽𝟣, ̂𝛽𝟥]

• Use the estimated covariance matrix:
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Visualizing via marginaleffects
int_mod <- lm(logpgp95 ~ avexpr * lat_abst + meantemp, data = ajr)
coeftest(int_mod)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.9864 0.9273 7.53 5e-10
## avexpr 0.5491 0.0941 5.84 3e-07
## lat_abst 5.8152 3.0791 1.89 0.0642
## meantemp -0.1048 0.0326 -3.21 0.0022
## avexpr:lat_abst -0.9095 0.4451 -2.04 0.0458
##
## (Intercept) ***
## avexpr ***
## lat_abst .
## meantemp **
## avexpr:lat_abst *
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Visualizing marginal effects
library(marginaleffects)
plot_slopes(int_mod, variables = "avexpr", condition = "lat_abst")

-0.50

-0.25

0.00

0.25

0.50

0.75

0.0 0.2 0.4 0.6
lat_abst

Sl
op
e

24 / 51



Tests of multiple coefficients

𝘮(𝘟, 𝘡) = 𝛽𝟢 + 𝘟𝛽𝟣 + 𝘡𝛽𝟤 + 𝘟𝘡𝛽𝟥

• What about a test of no effect of 𝘟 ever? Involves 2 coeffcients:

𝘏𝟢 ∶ 𝛽𝟣 = 𝛽𝟥 = 𝟢

• Alternative: 𝘏𝟣 ∶ 𝛽𝟣 ≠ 𝟢 or 𝛽𝟥 ≠ 𝟢

• We would like a test statistic that is large when the null is implausible.

• What about ̂𝛽𝟤
𝟣 + ̂𝛽𝟤

𝟥?
• Distribution depends on the variance/covariance of the coefficients.
• Need to normalize like the t-statistic.
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Alternative test for one coefficient
• Usually t-test of 𝘏𝟢 ∶ 𝛽𝘫 = 𝘣𝟢 based on the t-statistic:

𝘵 =
̂𝛽𝘫 − 𝘣𝟢

ŝe( ̂𝛽𝘫)
,

• Reject when |𝘵| > 𝘤 for some critical value 𝘤 from the standard normal.

• Equivalent test based rejects when 𝘵𝟤 > 𝘤𝟤

𝘵𝟤 =
( ̂𝛽𝘫 − 𝘣𝟢)

𝟤

𝕍[ ̂𝛽𝘫 ]
=

𝘯 ( ̂𝛽𝘫 − 𝘣𝟢)
𝟤

[𝗩 ̂𝜷]𝘫 𝘫

• Because 𝘵 𝘥→ 𝒩(𝟢, 𝟣), we’ll have 𝘵𝟤 converging to a 𝜒𝟤
𝟣 distribution

• Reminder: 𝜒𝟤
𝘬 is the sum of 𝘬 squared standard normals.

• Could get the critical value for 𝘵𝟤 directly from 𝜒𝟤
𝟣.
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Rewriting hypotheses with matrices
• We can rewrite the null hypothesis as 𝘏𝟢 ∶ 𝗟𝜷 = 𝗰 where,

𝗟 = (𝟢 𝟣 𝟢 𝟢
𝟢 𝟢 𝟢 𝟣) 𝗰 = (𝟢

𝟢)

• 𝗟 has 𝘲 rows or restriction and 𝘬 + 𝟣 columns (one for each coefficient)

• Estimated version of the constraint: 𝗟 ̂𝜷
• By the Delta method, under the null hypothesis we have

√𝘯 (𝗟 ̂𝜷 − 𝗟𝜷) 𝘥→ 𝒩(𝟢, 𝗟′𝗩𝜷𝗟).

• In this case:
√𝘯 ([

̂𝛽𝟣
̂𝛽𝟥
]) 𝘥→ 𝒩 ([𝟢

𝟢] , [[𝗩𝜷][𝟣𝟣] [𝗩𝜷][𝟣𝟥]
[𝗩𝜷][𝟥𝟣] [𝗩𝜷][𝟥𝟥]

])

• If this covariance matrix where identity, then these would be standard
normal and ̂𝛽𝟤

𝟣 + ̂𝛽𝟤
𝟥 would be 𝜒𝟤
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Wald statistic

• Under the null,
√𝘯 (𝗟 ̂𝜷 − 𝗰) 𝘥→ 𝒩(𝟢, 𝗟′𝗩𝜷𝗟)

• (𝗟 ̂𝜷 − 𝗰)′(𝗟 ̂𝜷 − 𝗰) is the squared deviations from the null.

• Problem: doesn’t account for variance/covariance of the estimated
coefficients.

• Wald statistic normalize by the covariance matrix:

𝘞 = 𝘯 (𝗟 ̂𝜷 − 𝗰)
′
(𝗟′�̂�𝜷𝗟)

−𝟣
(𝗟 ̂𝜷 − 𝗰)

• Similar to dividing by the SE for the t-test
• Squared distance of observed values from the null, weighted by the
distribution of the parameters under the null
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Weighting by the distribution

-5 0 5

-5

0

5

β̂1

β̂3

29 / 51



Wald test

𝘞 = 𝘯 (𝗟 ̂𝜷 − 𝗰)
′
(𝗟′�̂�𝜷𝗟)

−𝟣
(𝗟 ̂𝜷 − 𝗰)

• Asymptotically under the null 𝘞 𝘥→ 𝜒𝟤
𝘲 where 𝘲 is rows of 𝗟

• 𝘲 is the number of linear restrictions in the null

• Wald test: reject when 𝘞 > 𝘸𝛼, where ℙ(𝘞 > 𝘸𝛼) = 𝛼 under the null.

• Use 𝜒𝟤
𝘲 distribution for critical values, p-values

• Typical software output: F-statistic 𝘍 = 𝘞 /𝘲

• p-values and critical values come from 𝘍 distribution with 𝘲 and
𝘯 − 𝘬 − 𝟣 dfs.

• As 𝘯 → ∞, 𝘍𝘲,𝘯−𝘬−𝟣
𝘥→ 𝜒𝟤

𝘲 so asymptotically similar to Wald under
homoskedascity (slightly more conservative).

• No justification for 𝘍 test under heteroskedasticity.
• “Usual” F-test reports test of all coef = 0 except intercept (pointless?)
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Wald test steps

1. Choose a Type I error rate, 𝛼.

• Same interpretation: rate of false positives you are willing to accept

2. Calculate the rejection region for the test (one-sided)

• Rejection region is the region 𝘞 > 𝘸𝛼 such that ℙ(𝘞 > 𝘸𝛼) = 𝛼
• We can get this from R using the qchisq() function

3. Reject if observed statistic is bigger than critical value

• Use pchisq() to get p-values if needed.

• When applied to a single coefficient, equivalent to a t-test.

• Use packages like {lmtest} or {clubSandwich} in R.
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Wald test in lmtest

## run OLS with the restrictions imposed (avexpr removed)
restricted <- lm(logpgp95 ~ lat_abst + meantemp, data = ajr)

## pass estimated model and estimated null model to
## wald test with HC variance estimator
lmtest::waldtest(restricted, int_mod, test = "Chisq",

vcov = vcovHC)

## Wald test
##
## Model 1: logpgp95 ~ lat_abst + meantemp
## Model 2: logpgp95 ~ avexpr * lat_abst + meantemp
## Res.Df Df Chisq Pr(>Chisq)
## 1 57
## 2 55 2 34.2 3.7e-08 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Multiple testing

• Separate t-tests for each 𝛽𝘫 : 𝛼 of them will be significant by chance.

• Illustration:

• Randomly draw 21 variables independently.
• Run a regression of the first variable on the rest.

• By design, no effect of any variable on any other.
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Multiple test example
noise <- data.frame(matrix(rnorm(2100), nrow = 100, ncol = 21))
summary(lm(noise))

##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.028039 0.113820 -0.25 0.8061
## X2 -0.150390 0.112181 -1.34 0.1839
## X3 0.079158 0.095028 0.83 0.4074
## X4 -0.071742 0.104579 -0.69 0.4947
## X5 0.172078 0.114002 1.51 0.1352
## X6 0.080852 0.108341 0.75 0.4577
## X7 0.102913 0.114156 0.90 0.3701
## X8 -0.321053 0.120673 -2.66 0.0094 **
## X9 -0.053122 0.107983 -0.49 0.6241
## X10 0.180105 0.126443 1.42 0.1583
## X11 0.166386 0.110947 1.50 0.1377
## X12 0.008011 0.103766 0.08 0.9387
## X13 0.000212 0.103785 0.00 0.9984
## X14 -0.065969 0.112214 -0.59 0.5583
## X15 -0.129654 0.111575 -1.16 0.2487
## X16 -0.054446 0.125140 -0.44 0.6647
## X17 0.004335 0.112012 0.04 0.9692
## X18 -0.080796 0.109853 -0.74 0.4642
## X19 -0.085806 0.118553 -0.72 0.4713
## X20 -0.186006 0.104560 -1.78 0.0791 .
## X21 0.002111 0.108118 0.02 0.9845
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.999 on 79 degrees of freedom
## Multiple R-squared: 0.201, Adjusted R-squared: -0.00142
## F-statistic: 0.993 on 20 and 79 DF, p-value: 0.48
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Multiple testing gives false positives

• 1 out of 20 variables significant at 𝛼 = 𝟢.𝟢𝟧

• 2 out of 20 variables significant at 𝛼 = 𝟢.𝟣

• Exactly the number of false positives we would expect.

• But notice the F-statistic: the variables are not jointly significant

• Bonferroni correction: use p-value cutoff 𝛼/𝘮 where 𝘮 is the number
of hypotheses.

• Example: 𝟢.𝟢𝟧/𝟤𝟢 = 𝟢.𝟢𝟢𝟤𝟧
• Ensures that the family-wise error rate (probability of making at least 1
Type I error) is less than 𝛼.
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4/ Linear Regression
Model and Finite-sample
Properties



Standard linear regression model

• Standard textbook model: correctly specified linear CEF

• Designed for finite-sample results.

Assumption: Linear Regression Model

1. The variables (𝘠 , 𝗫) satisfy the the linear CEF assumption.

𝘠 = 𝗫′𝜷 + 𝘦
𝔼[𝘦 ∣ 𝗫] = 𝟢.

2. The design matrix is invertible 𝔼[𝗫𝗫′] > 𝟢 (positive definite).

• Basically this assumes the CEF of 𝘠 given 𝗫 is linear.

• We continue to maintain {(𝘠𝘪 , 𝗫𝘪 )} are i.i.d.
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Properties of OLS under linear CEF

• Linear CEFs imply stronger finite-sample guarantees:

1. Unbiasedness: 𝔼 [ ̂𝜷 ∣ 𝕏] = 𝜷
2. Conditional sampling variance: let 𝜎𝟤

𝘪 = 𝔼[𝘦𝟤
𝘪 ∣ 𝗫𝘪 ]

𝕍[ ̂𝜷 ∣ 𝕏] = (𝕏′𝕏)−𝟣 (
𝘯

∑
𝘪=𝟣

𝜎𝟤
𝘪 𝗫𝘪𝗫′

𝘪 ) (𝕏′𝕏)−𝟣

• Useful when linearity holds by default (discrete 𝘟 in experiments, etc)
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Linear CEF under homoskedasticity

• Under homoskedasticity, we have a few other finite-sample results:

3. Conditional sampling variance: 𝕍[ ̂𝜷 ∣ 𝕏] = 𝜎 𝟤 (𝕏′𝕏)−𝟣

4. Unbiased variance estimator: 𝔼 [�̂�𝟢[ ̂𝜷] ∣ 𝗫] = 𝜎 𝟤(𝕏′𝕏)−𝟣

5. Gauss-Markov: OLS is the best linear unbiased estimator of 𝜷 (BLUE). If
̃𝜷 is a linear estimator,

𝕍[ ̃𝜷 ∣ 𝕏] ≥ 𝕍[ ̂𝜷 ∣ 𝕏] = 𝜎 𝟤 (𝕏′𝕏)−𝟣

• For matrices, 𝗔 ≥ 𝗕 means that 𝗔 − 𝗕 is positive semidefinite.
• A matrix 𝗖 is p.s.d. if 𝘅′𝗖𝘅 ≥ 𝟢.
• Upshot: OLS will have the smaller SEs than any other linear estimator.
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Normal regression model

• Most parametric: 𝘠 ∼ 𝒩(𝗫′𝜷, 𝜎 𝟤).

• Normal error model since 𝘦 = 𝘠 − 𝗫′𝜷 ∼ 𝒩(𝟢, 𝜎 𝟤).

• Rarely believed, but allows for exact inference for all 𝘯.

• ( ̂𝛽𝘫 − 𝛽𝘫 )/ŝe( ̂𝛽𝘫 ) follows a 𝘵 distribution with 𝘯 − 𝘬 degrees of freedom.
• 𝘍 statistics follows 𝘍 distribution exactly rather than approximately.

• Software often implicitly assumes this for p-values.

• With reasonable 𝘯, asymptotic normality has the same effect.
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5/ Clustering



Clustered dependence: intuition

• Think back to the Gerber, Green, and Larimer (2008) social pressure
mailer example.

• Randomly assign households to different treatment conditions.
• But the measurement of turnout is at the individual level.

• Zero conditional mean error holds here (random assignment)

• Violation of iid/random sampling:

• errors of individuals within the same household are correlated.
• SEs are going to be wrong.

• Called clustering or clustered dependence
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Clustered dependence: notation

• Clusters (groups): 𝘨 = 𝟣, … , 𝘮

• Units: 𝘪 = 𝟣, … , 𝘯𝘨

• 𝘯𝘨 is the number of units in cluster 𝘨

• 𝘯 = ∑𝘮
𝘨=𝟣 𝘯𝘨 is the total number of units

• Units are (usually) belong to a single cluster:

• voters in households
• individuals in states
• students in classes
• rulings in judges

• Outcome varies at the unit-level, 𝘠𝘪𝘨 and the main independent
variable varies at the cluster level, 𝘟𝘨 .
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Clustered dependence: example model

𝘠𝘪𝘨 = 𝛽𝟢 + 𝘟𝘨𝛽𝟣 + 𝘷𝘪𝘨

= 𝛽𝟢 + 𝘟𝘨𝛽𝟣 + 𝘤𝘨 + 𝘶𝘪𝘨

• 𝘶𝘪𝘨 unit error component with 𝕍[𝘶𝘪𝘨 |𝘟𝘨 ] = 𝜎𝟤
𝘶

• 𝘤𝘨 cluster error component with 𝕍[𝘤𝘨 |𝘟𝘨 ] = 𝜎𝟤
𝘤

• 𝘤𝘨 and 𝘶𝘪𝘨 are assumed to be independent of each other.

• ⇝ 𝕍[𝘷𝘪𝘨 |𝘟𝘨 ] = 𝜎𝟤
𝘤 + 𝜎𝟤

𝘶

• What if we ignore this structure and just use 𝘷𝘪𝘨 as the error?
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• What if we ignore this structure and just use 𝘷𝘪𝘨 as the error?
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Lack of independence

• Covariance between two units 𝘪 and 𝘴 in the same cluster:

Cov[𝘷𝘪𝘨 , 𝘷𝘴𝘨 ] = 𝜎𝟤
𝘤

• Correlation between units in the same group is called the intra-class
correlation coefficient, or 𝜌𝘤 :

Cor[𝘷𝘪𝘨 , 𝘷𝘴𝘨 ] = 𝜎𝟤
𝘤

𝜎𝟤𝘤 + 𝜎𝟤𝘶
= 𝜌𝘤

• Zero covariance of two units 𝘪 and 𝘴 in different clusters 𝘨 and 𝘬 :

Cov[𝘷𝘪𝘨 , 𝘷𝘴𝘬 ] = 𝟢
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Example covariance matrix
• v′ = [ 𝘷𝟣,𝟣 𝘷𝟤,𝟣 𝘷𝟥,𝟣 𝘷𝟦,𝟤 𝘷𝟧,𝟤 𝘷𝟨,𝟤 ]

• Variance matrix under clustering:

𝕍[v|𝗫] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝜎𝟤
𝘤 + 𝜎𝟤

𝘶 𝜎𝟤
𝘤 𝜎𝟤

𝘤 𝟢 𝟢 𝟢
𝜎𝟤

𝘤 𝜎𝟤
𝘤 + 𝜎𝟤

𝘶 𝜎𝟤
𝘤 𝟢 𝟢 𝟢

𝜎𝟤
𝘤 𝜎𝟤

𝘤 𝜎𝟤
𝘤 + 𝜎𝟤

𝘶 𝟢 𝟢 𝟢
𝟢 𝟢 𝟢 𝜎𝟤

𝘤 + 𝜎𝟤
𝘶 𝜎𝟤

𝘤 𝜎𝟤
𝘤

𝟢 𝟢 𝟢 𝜎𝟤
𝘤 𝜎𝟤

𝘤 + 𝜎𝟤
𝘶 𝜎𝟤

𝘤
𝟢 𝟢 𝟢 𝜎𝟤

𝘤 𝜎𝟤
𝘤 𝜎𝟤

𝘤 + 𝜎𝟤
𝘶

⎤
⎥
⎥
⎥
⎥
⎥
⎦

• Variance matrix under i.i.d.:

𝕍[v|𝗫] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝜎𝟤
𝘶 𝟢 𝟢 𝟢 𝟢 𝟢

𝟢 𝜎𝟤
𝘶 𝟢 𝟢 𝟢 𝟢

𝟢 𝟢 𝜎𝟤
𝘶 𝟢 𝟢 𝟢

𝟢 𝟢 𝟢 𝜎𝟤
𝘶 𝟢 𝟢

𝟢 𝟢 𝟢 𝟢 𝜎𝟤
𝘶 𝟢

𝟢 𝟢 𝟢 𝟢 𝟢 𝜎𝟤
𝘶

⎤
⎥
⎥
⎥
⎥
⎥
⎦
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Effects of clustering

𝘠𝘪𝘨 = 𝛽𝟢 + 𝘟𝘨𝛽𝟣 + 𝘤𝘨 + 𝘶𝘪𝘨

• 𝕍𝟢[ ̂𝛽𝟣] = conventional OLS variance assuming i.i.d./homoskedasticity.

• Let 𝕍[ ̂𝛽𝟣] be the true sampling variance under clustering.

• When clusters are balanced, 𝘯∗ = 𝘯𝘨 , comparison of clustered to
conventional:

𝕍[ ̂𝛽𝟣] ≈ 𝕍𝟢[ ̂𝛽𝟣] (𝟣 + (𝘯∗ − 𝟣)𝜌𝘤)

• True variance will be higher than conventional when within-cluster
correlation is positive, 𝜌𝘤 > 𝟢.
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Linear model with clustering

𝘠𝘪𝘨 = 𝗫′
𝘪𝘨𝜷 + 𝘷𝘪𝘨

• Assumptions:

• 𝔼[𝘷𝘪𝘨 ∣ 𝗫𝘪𝘨 ] = 𝟢 so we have the correct CEF.
• 𝔼[𝘷𝘪𝘨 𝘷𝘫𝘨′ ∣ 𝗫𝘪𝘨 , 𝗫𝘫𝘨′ ] = 𝟢 unless 𝘨 = 𝘨 ′.
• Correlated errors allowed within groups, uncorrelated across. Allows
heteroskedasticity.

• Pooled OLS under clustered dependence:

𝗬𝘨 = 𝕏𝘨𝜷 + 𝘃𝘨

• 𝗬𝘨 is the 𝘯𝘨 × 𝟣 vector of responses for cluster 𝘨
• 𝕏𝘨 is the 𝘯𝘨 × 𝘬 matrix of data for the 𝘨th cluster.

• We can write the OLS estimator as:

̂𝜷 = (
𝘮

∑
𝘨=𝟣

𝕏′
𝘨 𝕏𝘨 ) (

𝘮
∑
𝘨=𝟣

𝕏′
𝘨 𝗬𝘨 )
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𝘮

∑
𝘨=𝟣

𝕏′
𝘨 𝕏𝘨 ) (

𝘮
∑
𝘨=𝟣

𝕏′
𝘨 𝗬𝘨 )
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Linear model with clustering

𝘠𝘪𝘨 = 𝗫′
𝘪𝘨𝜷 + 𝘷𝘪𝘨
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Cluster-robust variance estimator
• Independence is across clusters so the CLT holds as 𝘮 gets big.

• Key intuition: we’re sampling clusters, not individual units.

• CLT implies
√𝘮( ̂𝜷 − 𝜷) will be asymp. normal with mean 0 and variance:

(𝔼[𝕏′
𝘨 𝕏𝘨 ])−𝟣 𝔼[𝕏′

𝘨 𝘃𝘨 𝘃′
𝘨 𝕏𝘨 ] (𝔼[𝕏′

𝘨 𝕏𝘨 ])−𝟣

• Similar to the iid case, replace population quantities with sample
versions (and divide by 𝘮):

�̂�CL0
̂𝜷 = (𝕏′𝕏)−𝟣 (

𝘮
∑
𝘨=𝟣

𝕏′
𝘨 ̂𝘃𝘨 ̂𝘃′

𝘨 𝕏𝘨 ) (𝕏′𝕏)−𝟣

• Noting: 𝕏′𝕏/𝘮 = 𝘮−𝟣 ∑𝘮
𝘨=𝟣 𝕏′

𝘨 𝕏𝘨

• With small-sample adjustment (reported by most software):

�̂�CL1
̂𝜷 = 𝘮

𝘮 − 𝟣
𝘯 − 𝟣
𝘯 − 𝘬 (𝕏′𝕏)−𝟣 (

𝘮
∑
𝘨=𝟣

𝕏′
𝘨 ̂𝘃𝘨 ̂𝘃′

𝘨 𝕏𝘨 ) (𝕏′𝕏)−𝟣
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Example: Gerber, Green, Larimer
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Social pressure model
load("../assets/gerber_green_larimer.RData")
library(lmtest)
social$voted <- 1 * (social$voted == "Yes")
social$treatment <- factor(
social$treatment,
levels = c("Control", "Hawthorne", "Civic Duty", "Neighbors", "Self")

)
mod1 <- lm(voted ~ treatment, data = social)
coeftest(mod1)

##
## t test of coefficients:
##
## Estimate Std. Error t value
## (Intercept) 0.29664 0.00106 279.53
## treatmentHawthorne 0.02574 0.00260 9.90
## treatmentCivic Duty 0.01790 0.00260 6.88
## treatmentNeighbors 0.08131 0.00260 31.26
## treatmentSelf 0.04851 0.00260 18.66
## Pr(>|t|)
## (Intercept) < 2e-16 ***
## treatmentHawthorne < 2e-16 ***
## treatmentCivic Duty 5.8e-12 ***
## treatmentNeighbors < 2e-16 ***
## treatmentSelf < 2e-16 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Social pressure model, CRSEs
library(sandwich)
coeftest(mod1, vcov = sandwich::vcovCL(mod1, cluster = social$hh_id))

##
## t test of coefficients:
##
## Estimate Std. Error t value
## (Intercept) 0.29664 0.00131 226.52
## treatmentHawthorne 0.02574 0.00326 7.90
## treatmentCivic Duty 0.01790 0.00324 5.53
## treatmentNeighbors 0.08131 0.00337 24.13
## treatmentSelf 0.04851 0.00330 14.70
## Pr(>|t|)
## (Intercept) < 2e-16 ***
## treatmentHawthorne 2.8e-15 ***
## treatmentCivic Duty 3.2e-08 ***
## treatmentNeighbors < 2e-16 ***
## treatmentSelf < 2e-16 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Cluster-robust standard errors

• CRSE do not change our estimates ̂𝜷, cannot fix bias

• Valid under clustered dependence when main variable is constant
within cluster

• Relies on independence between clusters
• Allows for arbitrary dependence within clusters
• CRSEs usually > conventional SEs—use when you suspect clustering

• When 𝘟𝘪𝘨 not constant within cluster, but just correlated⇝ more
complicated.

• See Abadie, Athey, Imbens, and Wooldridge (2021).

• Consistency of the CRSE are in the number of groups, not the number
of individuals

• CRSEs can be incorrect with a small (< 50 maybe) number of clusters
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