# 12. Algebra of Least Squares 

Fall 2023

Matthew Blackwell
Gov 2002 (Harvard)

## Where are we? Where are we going?

- We saw how the population linear projection works.
- How can we estimate the parameters of the linear projection or CEF?
- Now: least squares estimator and its algebraic properties.
- After that: the statistical properties of least squares.


## Acemoglu, Johnson, and Robinson (2001)

Political Institutions and Economic Development


# 1/ Deriving the OLS estimator 

## Samples vs population

## Assumption

The variables $\left\{\left(Y_{1}, \mathbf{X}_{1}\right), \ldots,\left(Y_{i}, \mathbf{X}_{i}\right), \ldots,\left(Y_{n}, \mathbf{X}_{n}\right)\right\}$ are i.i.d. draws from a common distribution $F$.

- $F$ is the population distribution or DGP.
- Without $i$ subscripts, $(Y, \mathbf{X})$ are r.v.s and draws from $F$.
- $\left\{\left(Y_{i}, \mathbf{X}_{i}\right): i=1, \ldots, n\right\}$ is the sample and can be seen in two ways:
- Numbers in your data matrix, fixed to the analyst.
- From a statistical POV, they are realizations of a random process.
- Violations include time-series data and clustered sampling.
- Weakening i.i.d. usually complicates notation but can be done.


## Quantity of interest

- Population linear projection model:

$$
Y=\mathbf{X}^{\prime} \boldsymbol{\beta}+e
$$

- Here $\beta$ minimizes the population expected squared error:

$$
\boldsymbol{\beta}=\underset{\mathbf{b} \in \mathbb{R}^{k}}{\arg \min } S(\mathbf{b}), \quad S(\mathbf{b})=\mathbb{E}\left[\left(Y-\mathbf{X}^{\prime} \mathbf{b}\right)^{2}\right]
$$

- Last time we saw that this can be written:

$$
\boldsymbol{\beta}=\left(\mathbb{E}\left[\mathbf{X} \mathbf{X}^{\prime}\right]\right)^{-1} \mathbb{E}[\mathbf{X} Y]
$$

- How do we estimate $\beta$ ?


## Which line is better?



## Plug-in principle returns!

- Plug-in estimator: solve the sample version of the population goal.
- Replace projection errors with observed errors, or residuals: $Y_{i}-\mathbf{X}_{i}^{\prime} \mathbf{b}$
- Sum of squared residuals, $\operatorname{SSR}(\mathbf{b})=\sum_{i=1}^{n}\left(Y_{i}-\mathbf{X}_{i}^{\prime} \mathbf{b}\right)^{2}$.
- Total prediction error using bas our estimated coefficient.
- We can use these residuals to get a sample average prediction error:

$$
\hat{S}(\mathbf{b})=\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\mathbf{X}_{i}^{\prime} \mathbf{b}\right)^{2}=\frac{1}{n} S S R(\mathbf{b})
$$

- $\hat{S}(\mathbf{b})$ is an estimator of the expected squared error, $S(\mathbf{b})$.


## Least squares estimator

- Ordinary least squares estimator minimizes $\hat{S}$ in place of $S$.

$$
\begin{aligned}
& \boldsymbol{\beta}=\underset{\mathbf{b} \in \mathbb{R}^{k}}{\arg \min } \mathbb{E}\left[\left(Y-\mathbf{X}^{\prime} \mathbf{b}\right)^{2}\right] \\
& \hat{\boldsymbol{\beta}}=\underset{\mathbf{b} \in \mathbb{R}^{k}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\mathbf{X}_{i}^{\prime} \mathbf{b}\right)^{2}
\end{aligned}
$$

- In words: find the coefficients that minimize the sum/average of the squared residuals.
- After some calculus, we can write this as a plug-in estimator:

$$
\hat{\boldsymbol{\beta}}=\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right)^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i} Y_{i}\right)
$$

- $n^{-1} \sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}$ is the sample version of $\mathbb{E}\left[\mathbf{X X}^{\prime}\right]$
- $n^{-1} \sum_{i=1}^{n} \mathbf{X}_{i} Y_{i}$ is the sample version of $\mathbb{E}[\mathbf{X} Y]$


## Bivariate regressions

- Bivariate regression is the linear projection model with $\mathbf{X}=(1, X)$ :

$$
Y=\beta_{0}+X \beta_{1}+e
$$

- Linear projection slope in the population from last times:

$$
\beta_{1}=\frac{\operatorname{Cov}(X, Y)}{\mathbb{V}[X]}
$$

- We can show the OLS estimator of the slope is:

$$
\hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)\left(X_{i}-\bar{X}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}=\frac{\widehat{\operatorname{Cov}}(X, Y)}{\hat{\mathbb{V}}[X]}
$$

## Visualizing OLS



## Residuals

- Fitted value $\widehat{Y}_{i}=\mathbf{X}_{i}^{\prime} \hat{\boldsymbol{\beta}}$ is what the model predicts at $\mathbf{X}_{i}$
- Not really a prediction for $Y_{i}$ since that was used to generate $\hat{\beta}$
- Residuals are the difference between observed and fitted values:

$$
\hat{e}_{i}=Y_{i}-\widehat{Y}_{i}=Y_{i}-\mathbf{X}_{i}^{\prime} \hat{\beta}
$$

- We can write $Y_{i}=\mathbf{X}_{i}^{\prime} \hat{\boldsymbol{\beta}}+\hat{e}_{i}$.
- $\hat{e}_{i}$ are not the true errors $e_{i}$
- Key mechanical properties of OLS residuals:

$$
\sum_{i=1}^{n} \mathbf{x}_{i} \hat{e}_{i}=0
$$

- Sample covariance between $\mathbf{X}_{i}$ and $\hat{e}_{i}$ is 0 .
- If $\mathbf{X}_{i}$ has a constant, then $n^{-1} \sum_{i=1}^{n} \hat{e}_{i}=0$

2/ Model fit

## Prediction error

- How do we judge how well a regression fits the data?
- How much does $\mathbf{X}_{i}$ help us predict $Y_{i}$ ?
- Prediction errors without $X_{i}$ :
- Best prediction is the mean, $\bar{Y}$
- Prediction error is called the total sum of squares (TSS) would be:

$$
T S S=\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}
$$

- Prediction errors with $\mathbf{X}_{i}$ :
- Best predictions are the fitted values, $\widehat{Y}_{i}$.
- Prediction error is the sum of the squared residuals or SSR:

$$
S S R=\sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{i}\right)^{2}
$$

## Total SS vs SSR

Total Prediction Errors


## Total SS vs SSR

## Residuals



## R-squared

- Regression will always improve in-sample fit: $T S S>S S R$
- How much better does using $\mathbf{X}_{i}$ do? Coefficient of determination or $R^{2}$ :

$$
R^{2}=\frac{T S S-S S R}{T S S}=1-\frac{S S R}{T S S}
$$

- $R^{2}=$ fraction of the total prediction error eliminated by using $\mathbf{X}_{i}$.
- Common interpretation: $R^{2}$ is the fraction of the variation in $Y_{i}$ is "explained by" $\mathbf{X}_{i}$.
- $R^{2}=0$ means no relationship
- $R^{2}=1$ implies perfect linear fit
- Mechanically increases with additional covariates (better fit measures exist)

3/ Geometry of OLS

## Linear model in matrix form

- Linear model is a system of $n$ linear equations:

$$
\begin{aligned}
Y_{1} & =\mathbf{X}_{1}^{\prime} \boldsymbol{\beta}+e_{1} \\
Y_{2} & =\mathbf{X}_{2}^{\prime} \boldsymbol{\beta}+e_{2} \\
& \vdots \\
Y_{n} & =\mathbf{X}_{n}^{\prime} \boldsymbol{\beta}+e_{n}
\end{aligned}
$$

- We can write this more compactly using matrices and vectors:

$$
\mathbf{Y}=\left(\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{n}
\end{array}\right), \quad \mathbf{K}=\left(\begin{array}{c}
\mathbf{X}_{1}^{\prime} \\
\mathbf{X}_{2}^{\prime} \\
\vdots \\
\mathbf{X}_{n}^{\prime}
\end{array}\right)=\left(\begin{array}{ccccc}
1 & X_{11} & X_{12} & \cdots & X_{1 k} \\
1 & X_{21} & X_{22} & \cdots & X_{2 k} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & X_{n 1} & X_{n 2} & \cdots & X_{n k}
\end{array}\right), \quad \mathbf{e}=\left(\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{n}
\end{array}\right)
$$

- Model is now just:

$$
\mathbf{Y}=\mathbb{K} \boldsymbol{\beta}+\mathbf{e}
$$

## OLS estimator in matrix form

- Key relationship: sample sums can be written in matrix notation:

$$
\begin{aligned}
& \sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}=\mathbb{X}^{\prime} \mathbf{X} \\
& \sum_{i=1}^{n} \mathbf{X}_{i} Y_{i}=\mathbb{X}^{\prime} \mathbf{Y}
\end{aligned}
$$

- Implies we can write the OLS estimator as

$$
\hat{\boldsymbol{\beta}}=\left(X^{\prime} X\right)^{-1} X^{\prime} \mathbf{Y}
$$

- Residuals:

$$
\hat{\mathbf{e}}=\mathbf{Y}-\chi \hat{\boldsymbol{\beta}}=\left[\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{n}
\end{array}\right]-\left[\begin{array}{c}
1 \hat{\beta}_{0}+X_{11} \hat{\beta}_{1}+X_{12} \hat{\beta}_{2}+\cdots+X_{1 k} \hat{\beta}_{k} \\
1 \hat{\beta}_{0}+X_{21} \hat{\beta}_{1}+X_{22} \hat{\beta}_{2}+\cdots+X_{2 k} \hat{\beta}_{k} \\
\vdots \\
1 \hat{\beta}_{0}+X_{n 1} \hat{\beta}_{1}+X_{n 2} \hat{\beta}_{2}+\cdots+X_{n k} \hat{\beta}_{k}
\end{array}\right]
$$

## Projection/hat matrix

- We can define the transformation of $\mathbf{Y}$ that does the projection.

$$
X \hat{\boldsymbol{\beta}}=X\left(X^{\prime} X\right)^{-1} X^{\prime} \mathbf{Y}
$$

- Projection matrix

$$
\mathbf{P}=\mathbb{X}\left(X^{\prime} X\right)^{-1} \mathcal{X}^{\prime}
$$

- Also called the hat matrix it puts the "hat" on $\mathbf{Y}$ :

$$
\mathbf{P Y}=X\left(X^{\prime} X\right)^{-1} X^{\prime} \mathbf{Y}=X \hat{\boldsymbol{\beta}}=\widehat{\mathbf{Y}}
$$

- Key properties:
- $\mathbf{P}$ is an $n \times n$ symmetric matrix
- $\mathbf{P}$ is idempotent: $\mathbf{P P}=\mathbf{P}$
- Projecting $\mathbb{X}$ onto itself returns itself: $\mathbf{P K}=\mathbb{X}$


## Annihilator matrix

- Annihilator matrix projects onto the space spanned by the residual:

$$
\mathbf{M}=\mathbf{I}_{n}-\mathbf{P}=\mathbf{I}_{n}-\mathbb{X}\left(\mathbb{X}^{\prime} \mathbb{X}\right)^{-1} \mathbb{X}^{\prime}
$$

- Also called the residual maker:

$$
\mathbf{M Y}=\left(\mathbf{I}_{n}-\mathbf{P}\right) \mathbf{Y}=\mathbf{Y}-\mathbf{P} \mathbf{Y}=\mathbf{Y}-\widehat{\mathbf{Y}}=\hat{\mathbf{e}}
$$

- "Annihilates" any function in the column space of $\mathbb{X}, \mathcal{C}(\mathbb{X})$ :

$$
\mathbf{M} \mathbb{X}=\left(\mathbf{I}_{n}-\mathbf{P}\right) \mathbb{X}=\mathbb{X}-\mathbf{P} \mathbb{X}=\mathbb{X}-\mathbb{X}=\mathbf{0}
$$

- Properties:
- $\mathbf{M}$ is a symmetric $n \times n$ matrix and is idempotent $\mathbf{M M}=\mathbf{M}$
- Admits a nice expression for the residual vector: $\hat{\mathbf{e}}=\mathbf{M e}$
- Allows the following orthogonal partition:

$$
\mathbf{Y}=\mathbf{P Y}+\mathbf{M Y}=\text { projection }+ \text { residual }
$$

## Geometric view of OLS

- Recall the length of a vector: $\|\hat{\mathbf{a}}\|=\sqrt{\hat{a}_{1}^{1}+\cdots+\hat{a}_{n}^{2}}$
- Distance between two vectors: $\|\mathbf{a}-\mathbf{b}\|=\sqrt{\left(a_{1}-b_{1}\right)^{2}+\cdots+\left(a_{n}-b_{n}\right)^{2}}$
- We can rewrite the OLS estimator as:

$$
\hat{\boldsymbol{\beta}}=\underset{\mathbf{b} \in \mathbb{R}^{k+1}}{\arg \min }\|\mathbf{Y}-\mathbf{X} \mathbf{b}\|^{2}=\underset{\mathbf{b} \in \mathbb{R}^{k+1}}{\arg \min } \sum_{i=1}^{n}\left(Y_{i}-\mathbf{X}_{i}^{\prime} \mathbf{b}\right)^{2}
$$

- Let $\mathcal{C}(\mathbb{X})=\left\{\mathbb{X} \mathbf{b}: \mathbf{b} \in \mathbb{R}^{k+1}\right\}$ be the column space of $\mathbb{X}$
- All $n$-vectors formed as a linear combination of the columns of $\mathcal{K}$.
- $k+1$-dimensional subspace of $\mathbb{R}^{n}$
- This is the space that OLS is searching over!
- Geometrically OLS is:
- Find coefficients that minimize distance between the $\mathbf{Y}$ and $\chi_{\mathbf{b}}$.
- Find the point in $\mathcal{C}(\mathbb{X})$ that is closest to $\mathbf{Y}$

- Finding closest point in $\mathcal{C}(\mathbb{X})$ to $\mathbf{Y}$ is called projection
- Example: $n=3$ and $k=2$ : points in 3D space.
- Column space of $\mathbb{K}$ is a plane in this space.
- Residual vector $\hat{\mathbf{e}}=\mathbf{Y}-\mathbb{X} \hat{\boldsymbol{\beta}}$ is orthogonal to $\mathcal{C}(\mathbb{X})$
- Shortest distance from $\mathbf{Y}$ to $\mathcal{C}(\mathbb{X})$ is a straight line to the plane, which will be perpendicular to $\mathcal{C}(\mathbb{X})$.
- Implies that $\mathbb{X}^{\prime} \hat{\mathbf{e}}=0$


## Multicollinearity

- Hidden assumption: $\mathbb{X}^{\prime} \mathcal{X}=\sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}$ is invertible.
- Equivalent to $\mathbb{X}$ being full column rank.
- Equivalent to columns of $\mathbb{X}$ being linearly independent
- Full column rank if $<\mathbf{b}=0$ if and only if $\mathbf{b}=\mathbf{0}$.

$$
b_{1} \mathbb{X}_{1}+b_{2} \mathfrak{X}_{2}+\cdots+b_{k+1} \mathbb{X}_{k+1}=0 \quad \Leftrightarrow \quad b_{1}=b_{2}=\cdots=b_{k+1}=0,
$$

- Typically reasonable but can be violated by user error:
- Accidentally adding the same variable twice.
- Including all dummies for a categorical variable.
- Including fixed effects for group and variables that do not vary within groups.

4/ Partitioned regression and partial regression

## Partitioned regression

- Partition covariates and coefficients $\mathbb{X}=\left[\mathbb{K}_{1} \mathbb{K}_{2}\right]$ and $\boldsymbol{\beta}=\left(\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}\right)^{\prime}$ :

$$
\mathbf{Y}=\mathcal{X}_{1} \boldsymbol{\beta}_{1}+\mathcal{X}_{2} \boldsymbol{\beta}_{2}+\mathbf{e}
$$

- Can we find expressions for $\hat{\boldsymbol{\beta}}_{1}$ and $\hat{\boldsymbol{\beta}}_{2}$ ?
- Residual regression or Frisch-Waugh-Lovell theorem to obtain $\hat{\boldsymbol{\beta}}_{1}$ :
- Use OLS to regress $\mathbf{Y}$ on $\mathbb{X}_{2}$ and obtain residuals $\tilde{\mathbf{e}}_{2}$.
- Use OLS to regress each column of $\mathbb{X}_{1}$ on $\mathbb{X}_{2}$ and obtain residuals $\widetilde{\mathbb{X}}_{1}$.
- Use OLS to regress $\tilde{\mathbf{e}}_{2}$ on $\widetilde{\mathbb{K}}_{1}$


## Focus on simple case

- Focus on single covariate model with no intercept: $Y_{i}=X_{i} \beta+e_{i}$
- Let $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ and recall inner product: $\langle\mathbf{X}, \mathbf{Y}\rangle=\sum_{i=1}^{n} X_{i} Y_{i}$
- Inner products measure how similar two vectors are.
- Slope in this case:

$$
\hat{\beta}=\frac{\sum_{i=1}^{n} X_{i} Y_{i}}{\sum_{i=1}^{n} X_{i}^{2}}=\frac{\langle\mathbf{X}, \mathbf{Y}\rangle}{\langle\mathbf{X}, \mathbf{X}\rangle}
$$

- Suppose we add an orthogonal covariate $\mathbf{Y}=\mathbf{X} \beta+\mathbf{Z} \gamma+\mathbf{e}$ with $\langle\mathbf{X}, \mathbf{Z}\rangle=0$.

$$
\hat{\beta}=\frac{\langle\mathbf{X}, \mathbf{Y}\rangle}{\langle\mathbf{X}, \mathbf{X}\rangle} \quad \widehat{\gamma}=\frac{\langle\mathbf{Z}, \mathbf{Y}\rangle}{\langle\mathbf{Z}, \mathbf{Z}\rangle}
$$

- With exactly orthogonal covariates, multivariate OLS is the same as univariate OLS.
- Only holds in balanced, designed experiments.


## Adding the intercept

- Consider the OLS slope with an intercept:

$$
\hat{\beta}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)}=\frac{\langle\mathbf{X}-\bar{X} \mathbf{1}, \mathbf{Y}-\bar{Y} \mathbf{1}\rangle}{\langle\mathbf{X}-\bar{X} \mathbf{1}, \mathbf{X}-\bar{X} \mathbf{1}\rangle}=\frac{\langle\mathbf{X}-\bar{X} \mathbf{1}, \mathbf{Y}\rangle}{\langle\mathbf{X}-\bar{X} \mathbf{1}, \mathbf{X}-\bar{X} \mathbf{1}\rangle}
$$

- How can we get this?

1. Regress $\mathbf{X}$ on $\mathbf{1}$ to get coefficient $\bar{X}$
2. Regress $\mathbf{Y}$ on residuals from step $1, \mathbf{X}-\bar{X} \mathbf{1}$

- If wanted to get coefficient on added variable $Z_{i}$, we could repeat this:

1. Regress $\mathbf{Z}$ on $\widetilde{\mathbf{X}}=\mathbf{X}-\bar{X} \mathbf{1}$ on and obtain coefficient $\langle\mathbf{Z}, \widetilde{\mathbf{X}}\rangle /\langle\widetilde{\mathbf{X}}, \widetilde{\mathbf{X}}\rangle$
2. Regress $\mathbf{Y}$ on residual from

## Visualizing orthogonalization



FIGURE 3.4. Least squares regression by orthogonalization of the inputs. The vector $\mathbf{x}_{2}$ is regressed on the vector $\mathbf{x}_{1}$, leaving the residual vector $\mathbf{z}$. The regression of $\mathbf{y}$ on $\mathbf{z}$ gives the multiple regression coefficient of $\mathbf{x}_{2}$. Adding together the projections of $\mathbf{y}$ on each of $\mathbf{x}_{1}$ and $\mathbf{z}$ gives the least squares fit $\hat{\mathbf{y}}$.

## Why does residual regression work?

- We can find $\hat{\boldsymbol{\beta}}_{1}$ by nested minimization:

$$
\hat{\boldsymbol{\beta}}_{1}=\underset{\boldsymbol{\beta}_{1}}{\arg \min }\left(\min _{\boldsymbol{\beta}_{2}}\left\|\mathbf{Y}-\mathbb{K}_{1} \boldsymbol{\beta}_{1}-\mathbb{X}_{2} \boldsymbol{\beta}_{2}\right\|^{2}\right)
$$

- First find the minimum of the SSR over $\boldsymbol{\beta}_{2}$ fixing $\boldsymbol{\beta}_{1}$
- Then find $\boldsymbol{\beta}_{1}$ that minimizes the resulting SSR.
- The projection and annihilator matrices are defined only by covariates.
- $\mathbf{M}_{2}=\mathbf{I}_{n}-\mathbb{X}_{2}\left(X_{2}^{\prime} \mathbb{K}_{2}\right)^{-1} \mathbb{K}_{2}^{\prime}$
- Creates residuals from a regression on or $\mathbb{K}_{2}$
- Solving the nested minimization gives:

$$
\hat{\boldsymbol{\beta}}_{1}=\left(\mathbb{K}_{1}^{\prime} \mathbf{M}_{2} \mathbb{K}_{1}\right)^{-1}\left(\mathbb{X}_{1}^{\prime} \mathbf{M}_{\mathbf{2}} \mathbf{Y}\right)
$$

- When will $\hat{\boldsymbol{\beta}}_{1}$ will be the same regardless of whether $\mathcal{X}_{2}$ is included?
- If $\mathbb{X}_{1}$ and $\mathbb{X}_{2}$ are orthogonal so $\mathbb{X}_{2}^{\prime} \mathbb{X}_{1}=0$ so $\mathbf{M}_{2} \mathbb{X}_{1}=\mathbb{X}_{1}$


## Residual regression

- Define two sets of residuals:
- $\widetilde{X}_{2}=M_{1} \mathbb{X}_{2}=$ residuals from regression of $\mathbb{X}_{2}$ on $\mathbb{X}_{1}$
- $\tilde{\mathbf{e}}_{1}=\mathbf{M}_{1} \mathbf{Y}=$ residuals from regression of $\mathbf{Y}$ on $\mathbb{X}_{1}$.
- Then remembering that $\mathbf{M}_{1}$ is symmetric and idempotent:

$$
\begin{aligned}
\hat{\boldsymbol{\beta}}_{2} & =\left(\mathbb{K}_{2}^{\prime} \mathbf{M}_{1} \mathbb{X}_{2}\right)^{-1}\left(\mathbb{X}_{2}^{\prime} \mathbf{M}_{1} \mathbf{Y}\right) \\
& =\left(\mathbb{K}_{2}^{\prime} \mathbf{M}_{1} \mathbf{M}_{1} \mathcal{X}_{2}\right)^{-1}\left(\mathbb{K}_{2}^{\prime} \mathbf{M}_{1} \mathbf{M}_{1} \mathbf{Y}\right) \\
& =\left(\widetilde{\mathbb{K}}_{2}^{\prime} \widetilde{\mathbb{X}}_{2}\right)^{-1}\left(\widetilde{\mathbb{X}}_{2}^{\prime} \tilde{\mathbf{e}}_{1}\right)
\end{aligned}
$$

- $\hat{\boldsymbol{\beta}}_{2}$ can be obtained from a regression of $\tilde{\mathbf{e}}_{1}$ on $\widetilde{\mathbb{X}}_{2}$.
- Same result applies when using $\mathbf{Y}$ in place of $\tilde{\mathbf{e}}_{1}$.
- Intuition: residuals are orthogonal
- Called the Frisch-Waugh-Lovell Theorem
- Sample version of the results we saw for the linear projection.

5/ Influential observations

## Outliers, leverage points, and influential observations

- Least square heavily penalizes large residuals.
- Implies a just a few unusual observations can be extremely influential.
- Dropping them leads to large changes in the estimated $\hat{\boldsymbol{\beta}}$.
- Not all "unusual" observations have the same effect, though.
- Useful to categorize:

1. Leverage point: extreme in one $X$ direction
2. Outlier: extreme in the $Y$ direction
3. Influence point: extreme in both directions

## Example: Buchanan votes in Florida, 2000

- 2000 Presidential election in FL (Wand et al., 2001, APSR)



## Example: Buchanan votes in Florida, 2000



## Example: Buchanan votes in Florida, 2000



## Example: Buchanan votes

```
mod <- lm(edaybuchanan ~ edaytotal, data = flvote)
summary(mod)
```


## \#\#

```
\#\# Coefficients:
\begin{tabular}{lrrrr} 
\#\# & Estimate & Std. Error t value \(\operatorname{Pr}(>|t|)\) \\
\#\# (Intercept) & 54.22945 & 49.14146 & 1.10 & 0.27 \\
\#\# edaytotal & 0.00232 & 0.00031 & 7.48 & \(2.4 \mathrm{e}-10\) ***
\end{tabular}
\#\# ---
\#\# Signif. codes:
\#\# 0 '***' 0.001 '**' \(0.01 '^{\prime *} 0.05{ }^{\prime} .{ }^{\prime} 0.1 '^{\prime} 1\)
\#\#
\#\# Residual standard error: 333 on 65 degrees of freedom
\#\# Multiple R-squared: 0.463, Adjusted R-squared: 0.455
\#\# F-statistic: 56 on 1 and 65 DF, p-value: 2.42e-10
```


## Leverage point definition



- Values that are extreme in the $X$ dimension
- That is, values far from the center of the covariate distribution


## Leverage values

- Let $h_{i j}$ be the $(i, j)$ entry of $\mathbf{P}$. Then:

$$
\widehat{\mathbf{Y}}=\mathbf{P Y} \quad \Longrightarrow \quad \widehat{Y}_{i}=\sum_{j=1}^{n} h_{i j} Y_{j}
$$

- $h_{i j}=$ importance of observation $j$ is for the fitted value $\widehat{Y}_{i}$
- Leverage/hat values: $h_{i j}$ diagonal entries of the hat matrix
- With a simple linear regression, we have

$$
h_{i i}=\frac{1}{n}+\frac{\left(X_{i}-\bar{X}\right)^{2}}{\sum_{j=1}^{n}\left(X_{j}-\bar{X}\right)^{2}}
$$

- $\rightsquigarrow$ how far $i$ is from the center of the $X$ distribution
- Rule of thumb: examine hat values greater than $2(k+1) / n$


## Buchanan hats

| head(hatvalues(mod), 5) |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
| \#\# | 1 | 2 | 3 | 4 | 5 |
| \#\# | 0.0418 | 0.0228 | 0.2207 | 0.0156 | 0.0149 |

## Buchanan hats



## Outlier definition

## Outlier



- An outlier is far away from the center of the $Y$ distribution.
- Intuitively: a point that would be poorly predicted by the regression.


## Detecting outliers

- Want values poorly predicted? Look for big residuals, right?
- Problem: we use $i$ to estimate $\hat{\boldsymbol{\beta}}$ so $\widehat{\mathbf{Y}}$ aren't valid predctions.
- unit might pull the regression line toward itself $\rightsquigarrow$ small residual
- Better: leave-one-out prediction errors,

1. Regress $\mathbf{Y}_{(-i)}$ on $\mathcal{X}_{(-i)}$, where these omit unit $i$ :

$$
\hat{\boldsymbol{\beta}}_{(-i)}=\left(\mathbb{X}_{(-i)}^{\prime} \mathbb{X}_{(-i)}\right)^{-1} \mathbb{X}_{(-i)} \mathbf{Y}_{(-i)}
$$

2. Calculate predicted value of $Y_{i}$ using that regression: $\widetilde{Y}_{i}=\mathbf{X}_{i}^{\prime} \hat{\boldsymbol{\beta}}_{(-i)}$
3. Calculate prediction error: $\tilde{e}_{i}=Y_{i}-\widetilde{Y}_{i}$

- Simple closed-form expressions:

$$
\hat{\boldsymbol{\beta}}_{(-i)}=\hat{\boldsymbol{\beta}}-\left(\mathbb{X}^{\prime} \mathcal{X}\right)^{-1} \mathbf{X}_{i} \tilde{e}_{i} \quad \tilde{\boldsymbol{e}}_{i}=\frac{\hat{e}_{i}}{1-h_{i i}}
$$

## Influence points



- An influence point is one that is both an outlier and a leverage point.
- Extreme in both the $X$ and $Y$ dimensions


## Overall measures of influence

- Influence of $i$ can be measured by change in predictions:

$$
\widehat{Y}_{i}-\widetilde{Y}_{i}=h_{i i} \tilde{e}_{i}
$$

- How much does excluding $i$ from the regression change its predicted value?
- Equal to "leverage $\times$ outlier-ness"
- Lots of diagnostics exist, but are mostly heuristic.
- Does removing the point change a coefficient by a lot?


## Limitations of the standard tools



- What happens when there are two influence points?
- Red line drops the red influence point
- Blue line drops the blue influence point


## What to do about outliers and influential units?

- Is the data corrupted?
- Fix the observation (obvious data entry errors)
- Remove the observation
- Be transparent either way
- Is the outlier part of the data generating process?
- Transform the dependent variable $(\log (y))$
- Use a method that is robust to outliers (robust regression, least absolute deviations)

