12. Algebra of Least Squares

Fall 2023

Matthew Blackwell

Gov 2002 (Harvard)

Where are we? Where are we going?

- We saw how the population linear projection works.
- How can we estimate the parameters of the linear projection or CEF?
- Now: least squares estimator and its algebraic properties.
- After that: the statistical properties of least squares.

Acemoglu, Johnson, and Robinson (2001)

Average Protection Against Expropriation Risk

1/ Deriving the OLS estimator

Assumption

The variables $\{(Y_1, \mathbf{X}_1), \dots, (Y_i, \mathbf{X}_i), \dots, (Y_n, \mathbf{X}_n)\}$ are i.i.d. draws from a common distribution *F*.

- F is the **population distribution** or **DGP**.
 - Without *i* subscripts, (Y, \mathbf{X}) are r.v.s and draws from *F*.
- $\{(Y_i, \mathbf{X}_i) : i = 1, ..., n\}$ is the **sample** and can be seen in two ways:
 - Numbers in your data matrix, fixed to the analyst.
 - From a statistical POV, they are realizations of a random process.
- Violations include time-series data and clustered sampling.
 - Weakening i.i.d. usually complicates notation but can be done.

Quantity of interest

• Population linear projection model:

$$Y = \mathbf{X}' \boldsymbol{\beta} + e$$

• Here *β* minimizes the **population** expected squared error:

$$\boldsymbol{\beta} = \operatorname*{arg\,min}_{\mathbf{b} \in \mathbb{R}^k} S(\mathbf{b}), \qquad S(\mathbf{b}) = \mathbb{E}\left[\left(\boldsymbol{Y} - \mathbf{X}' \mathbf{b} \right)^2 \right]$$

• Last time we saw that this can be written:

$$\boldsymbol{\beta} = \left(\mathbb{E}[\mathbf{X}\mathbf{X}']\right)^{-1}\mathbb{E}[\mathbf{X}Y]$$

How do we estimate β?

Which line is better?

- Plug-in estimator: solve the sample version of the population goal.
- Replace projection errors with observed errors, or **residuals**: $Y_i X'_i b$
 - Sum of squared residuals, $SSR(\mathbf{b}) = \sum_{i=1}^{n} (Y_i \mathbf{X}'_i \mathbf{b})^2$.
 - Total prediction error using ${\bf b}$ as our estimated coefficient.
- We can use these residuals to get a sample average prediction error:

$$\widehat{S}(\mathbf{b}) = \frac{1}{n} \sum_{i=1}^{n} \left(Y_i - \mathbf{X}_i' \mathbf{b} \right)^2 = \frac{1}{n} SSR(\mathbf{b})$$

• $\hat{S}(\mathbf{b})$ is an estimator of the expected squared error, $S(\mathbf{b})$.

Least squares estimator

• Ordinary least squares estimator minimizes \hat{S} in place of S.

$$\boldsymbol{\beta} = \operatorname*{arg\,min}_{\mathbf{b} \in \mathbb{R}^{k}} \mathbb{E}\left[\left(Y - \mathbf{X}'\mathbf{b}\right)^{2}\right]$$
$$\hat{\boldsymbol{\beta}} = \operatorname*{arg\,min}_{\mathbf{b} \in \mathbb{R}^{k}} \frac{1}{n} \sum_{i=1}^{n} \left(Y_{i} - \mathbf{X}_{i}'\mathbf{b}\right)^{2}$$

- In words: find the coefficients that minimize the sum/average of the squared residuals.
- After some calculus, we can write this as a plug-in estimator:

$$\hat{\boldsymbol{\beta}} = \left(\frac{1}{n}\sum_{i=1}^{n}\mathbf{X}_{i}\mathbf{X}_{i}'\right)^{-1}\left(\frac{1}{n}\sum_{i=1}^{n}\mathbf{X}_{i}Y_{i}\right)$$

• $n^{-1} \sum_{i=1}^{n} \mathbf{X}_i \mathbf{X}'_i$ is the sample version of $\mathbb{E}[\mathbf{X}\mathbf{X}']$ • $n^{-1} \sum_{i=1}^{n} \mathbf{X}_i Y_i$ is the sample version of $\mathbb{E}[\mathbf{X}Y]$

Bivariate regressions

• **Bivariate regression** is the linear projection model with $\mathbf{X} = (1, X)$:

$$Y = \beta_0 + X\beta_1 + e$$

• Linear projection slope in the population from last times:

$$\beta_1 = \frac{\operatorname{Cov}(X, Y)}{\mathbb{V}[X]}$$

• We can show the OLS estimator of the slope is:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (Y_i - \overline{Y})(X_i - \overline{X})}{\sum_{i=1}^n (X_i - \overline{X})^2} = \frac{\widehat{\mathsf{Cov}}(X, Y)}{\widehat{\mathbb{V}}[X]}$$

Visualizing OLS

Residuals

- Fitted value $\widehat{Y}_i = \mathbf{X}'_i \hat{\boldsymbol{\beta}}$ is what the model predicts at \mathbf{X}_i
 - Not really a prediction for Y_i since that was used to generate $\hat{\beta}$
- Residuals are the difference between observed and fitted values:

$$\widehat{e}_i = Y_i - \widehat{Y}_i = Y_i - \mathbf{X}'_i \widehat{\boldsymbol{\beta}}$$

- We can write $Y_i = \mathbf{X}'_i \hat{\boldsymbol{\beta}} + \hat{e}_i$.
- \hat{e}_i are not the true errors e_i
- Key mechanical properties of OLS residuals:

$$\sum_{i=1}^{n} \mathbf{X}_{i} \hat{e}_{i} = 0$$

- Sample covariance between \mathbf{X}_i and \hat{e}_i is 0.
- If \mathbf{X}_i has a constant, then $n^{-1}\sum_{i=1}^n \hat{e_i} = 0$

2/ Model fit

Prediction error

- How do we judge how well a regression fits the data?
- How much does **X**_i help us predict Y_i?
- Prediction errors without X_i:
 - Best prediction is the mean, \overline{Y}
 - Prediction error is called the total sum of squares (*TSS*) would be:

$$TSS = \sum_{i=1}^{n} (Y_i - \overline{Y})^2$$

- Prediction errors with X_i:
 - Best predictions are the fitted values, \widehat{Y}_i .
 - Prediction error is the sum of the squared residuals or SSR:

$$SSR = \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2$$

Total SS vs SSR

Total Prediction Errors

Total SS vs SSR

- Regression will always improve in-sample fit: *TSS* > *SSR*
- How much better does using **X**_i do? **Coefficient of determination** or R²:

$$R^2 = \frac{TSS - SSR}{TSS} = 1 - \frac{SSR}{TSS}$$

- R^2 = fraction of the total prediction error eliminated by using X_i .
- **Common interpretation:** R^2 is the fraction of the variation in Y_i is "explained by" X_i .
 - $R^2 = 0$ means no relationship
 - $R^2 = 1$ implies perfect linear fit
- Mechanically increases with additional covariates (better fit measures exist)

3/ Geometry of OLS

Linear model in matrix form

• Linear model is a system of *n* linear equations:

$$\begin{aligned} Y_1 &= \mathbf{X}_1' \boldsymbol{\beta} + e_1 \\ Y_2 &= \mathbf{X}_2' \boldsymbol{\beta} + e_2 \\ \vdots \\ Y_n &= \mathbf{X}_n' \boldsymbol{\beta} + e_n \end{aligned}$$

• We can write this more compactly using matrices and vectors:

$$\mathbf{Y} = \begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{pmatrix}, \quad \mathbb{X} = \begin{pmatrix} \mathbf{X}'_1 \\ \mathbf{X}'_2 \\ \vdots \\ \mathbf{X}'_n \end{pmatrix} = \begin{pmatrix} 1 & X_{11} & X_{12} & \cdots & X_{1k} \\ 1 & X_{21} & X_{22} & \cdots & X_{2k} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & X_{n1} & X_{n2} & \cdots & X_{nk} \end{pmatrix}, \quad \mathbf{e} = \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{pmatrix}$$

• Model is now just:

$$\mathbf{Y} = \mathbb{X} \boldsymbol{\beta} + \mathbf{e}$$

OLS estimator in matrix form

• Key relationship: sample sums can be written in matrix notation:

$$\sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{X}'_{i} = \mathbb{X}' \mathbb{X}$$
$$\sum_{i=1}^{n} \mathbf{X}_{i} Y_{i} = \mathbb{X}' \mathbf{Y}$$

• Implies we can write the OLS estimator as

$$\hat{\pmb{\beta}} = \left(\mathbb{X}'\mathbb{X}\right)^{-1}\mathbb{X}'\mathbf{Y}$$

• Residuals:

$$\hat{\mathbf{e}} = \mathbf{Y} - \mathbb{X}\hat{\boldsymbol{\beta}} = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} - \begin{bmatrix} 1\hat{\beta}_0 + X_{11}\hat{\beta}_1 + X_{12}\hat{\beta}_2 + \dots + X_{1k}\hat{\beta}_k \\ 1\hat{\beta}_0 + X_{21}\hat{\beta}_1 + X_{22}\hat{\beta}_2 + \dots + X_{2k}\hat{\beta}_k \\ \vdots \\ 1\hat{\beta}_0 + X_{n1}\hat{\beta}_1 + X_{n2}\hat{\beta}_2 + \dots + X_{nk}\hat{\beta}_k \end{bmatrix}$$

Projection/hat matrix

• We can define the transformation of **Y** that does the projection.

$$\mathbb{X}\widehat{\pmb{\beta}} = \mathbb{X}(\mathbb{X}'\mathbb{X})^{-1}\mathbb{X}'\mathbf{Y}$$

• Projection matrix

$$\mathbf{P} = \mathbb{X}(\mathbb{X}'\mathbb{X})^{-1}\mathbb{X}'$$

• Also called the **hat matrix** it puts the "hat" on **Y**:

$$\mathbf{P}\mathbf{Y} = \mathbb{X}(\mathbb{X}'\mathbb{X})^{-1}\mathbb{X}'\mathbf{Y} = \mathbb{X}\widehat{\pmb{\beta}} = \widehat{\mathbf{Y}}$$

- Key properties:
 - **P** is an $n \times n$ symmetric matrix
 - P is idempotent: PP = P
 - Projecting $\mathbb X$ onto itself returns itself: $\textbf{P}\mathbb X=\mathbb X$

Annihilator matrix

• Annihilator matrix projects onto the space spanned by the residual:

$$\mathbf{M} = \mathbf{I}_n - \mathbf{P} = \mathbf{I}_n - \mathbb{X}(\mathbb{X}'\mathbb{X})^{-1}\mathbb{X}'$$

• Also called the **residual maker**:

$$\mathbf{M}\mathbf{Y} = (\mathbf{I}_n - \mathbf{P})\mathbf{Y} = \mathbf{Y} - \mathbf{P}\mathbf{Y} = \mathbf{Y} - \widehat{\mathbf{Y}} = \widehat{\mathbf{e}}$$

• "Annihilates" any function in the column space of \mathbb{X} , $\mathcal{C}(\mathbb{X})$:

$$\mathbf{M}\mathbb{X} = (\mathbf{I}_n - \mathbf{P})\mathbb{X} = \mathbb{X} - \mathbf{P}\mathbb{X} = \mathbb{X} - \mathbb{X} = \mathbf{0}$$

- Properties:
 - **M** is a symmetric $n \times n$ matrix and is idempotent **MM** = **M**
 - + Admits a nice expression for the residual vector: $\hat{\mathbf{e}}=\mathbf{M}\mathbf{e}$
- Allows the following orthogonal partition:

 $\mathbf{Y} = \mathbf{P}\mathbf{Y} + \mathbf{M}\mathbf{Y} = \text{projection} + \text{residual}$

Geometric view of OLS

- Recall the length of a vector: $\|\hat{\mathbf{a}}\| = \sqrt{\hat{a}_1^1 + \cdots + \hat{a}_n^2}$
- Distance between two vectors: $\|\mathbf{a} \mathbf{b}\| = \sqrt{(a_1 b_1)^2 + \dots + (a_n b_n)^2}$
- We can rewrite the OLS estimator as:

$$\hat{\boldsymbol{\beta}} = \underset{\mathbf{b} \in \mathbb{R}^{k+1}}{\arg\min} \|\mathbf{Y} - \mathbb{X}\mathbf{b}\|^2 = \underset{\mathbf{b} \in \mathbb{R}^{k+1}}{\arg\min} \sum_{i=1}^n (Y_i - \mathbf{X}'_i \mathbf{b})^2$$

- Let $\mathcal{C}(\mathbb{X})=\{\mathbb{X}\mathbf{b}:\mathbf{b}\in\mathbb{R}^{k+1}\}$ be the column space of \mathbb{X}
 - All *n*-vectors formed as a linear combination of the columns of X.
 - k + 1-dimensional subspace of \mathbb{R}^n
 - This is the space that OLS is searching over!
- Geometrically OLS is:
 - + Find coefficients that minimize distance between the $\mathbf Y$ and $\mathbb X \mathbf b.$
 - + Find the point in $\mathcal{C}(\mathbb{X})$ that is closest to Y

- + Finding closest point in $\mathcal{C}(\mathbb{X})$ to \mathbf{Y} is called $\boldsymbol{projection}$
- Example: n = 3 and k = 2: points in 3D space.
 - Column space of X is a plane in this space.
- Residual vector $\hat{\mathbf{e}} = \mathbf{Y} \mathbb{X}\hat{\boldsymbol{\beta}}$ is **orthogonal** to $\mathcal{C}(\mathbb{X})$
 - Shortest distance from Y to C(X) is a straight line to the plane, which will be perpendicular to C(X).
 - Implies that $\mathbb{X}' \hat{\boldsymbol{e}} = \boldsymbol{0}$

Multicollinearity

- Hidden assumption: $\mathbb{X}'\mathbb{X} = \sum_{i=1}^{n} \mathbf{X}_{i}\mathbf{X}'_{i}$ is invertible.
 - Equivalent to X being **full column rank**.
 - Equivalent to columns of X being **linearly independent**
- Full column rank if $X\mathbf{b} = 0$ if and only if $\mathbf{b} = \mathbf{0}$.

$$b_1\mathbb{X}_1+b_2\mathbb{X}_2+\dots+b_{k+1}\mathbb{X}_{k+1}=0 \quad \iff \quad b_1=b_2=\dots=b_{k+1}=0,$$

- Typically reasonable but can be violated by user error:
 - Accidentally adding the same variable twice.
 - Including all dummies for a categorical variable.
 - Including fixed effects for group and variables that do not vary within groups.

4/ Partitioned regression and partial regression

• Partition covariates and coefficients $\mathbb{X} = [\mathbb{X}_1 \ \mathbb{X}_2]$ and $\boldsymbol{\beta} = (\boldsymbol{\beta}_1, \boldsymbol{\beta}_2)'$:

$$\mathbf{Y} = \mathbb{X}_1 \boldsymbol{\beta}_1 + \mathbb{X}_2 \boldsymbol{\beta}_2 + \mathbf{e}$$

- Can we find expressions for $\hat{\beta}_1$ and $\hat{\beta}_2$?
- **Residual regression** or Frisch-Waugh-Lovell theorem to obtain $\hat{\beta}_{1}$:
 - Use OLS to regress \boldsymbol{Y} on \mathbb{X}_2 and obtain residuals $\boldsymbol{\tilde{e}}_2.$
 - Use OLS to regress each column of \mathbb{X}_1 on \mathbb{X}_2 and obtain residuals $\widetilde{\mathbb{X}}_1$.
 - + Use OLS to regress $\widetilde{\textbf{e}}_2$ on $\widetilde{\mathbb{X}}_1$

Focus on simple case

- Focus on single covariate model with no intercept: $Y_i = X_i \beta + e_i$
- Let $\mathbf{X} = (X_1, \dots, X_n)$ and recall inner product: $\langle \mathbf{X}, \mathbf{Y} \rangle = \sum_{i=1}^n X_i Y_i$
 - · Inner products measure how similar two vectors are.
- Slope in this case:

$$\hat{\beta} = \frac{\sum_{i=1}^{n} X_i Y_i}{\sum_{i=1}^{n} X_i^2} = \frac{\langle \mathbf{X}, \mathbf{Y} \rangle}{\langle \mathbf{X}, \mathbf{X} \rangle}$$

- Suppose we add an **orthogonal covariate Y** = **X** β + **Z** γ + **e** with \langle **X**, **Z** \rangle = 0.

$$\hat{eta} = rac{\langle \mathbf{X}, \mathbf{Y}
angle}{\langle \mathbf{X}, \mathbf{X}
angle} \quad \widehat{\gamma} = rac{\langle \mathbf{Z}, \mathbf{Y}
angle}{\langle \mathbf{Z}, \mathbf{Z}
angle}$$

- With exactly orthogonal covariates, multivariate OLS is the same as univariate OLS.
- Only holds in balanced, designed experiments.

Adding the intercept

• Consider the OLS slope with an intercept:

$$\hat{\boldsymbol{\beta}} = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{\sum_{i=1}^{n} (X_i - \overline{X})} = \frac{\langle \mathbf{X} - \overline{X} \mathbf{1}, \mathbf{Y} - \overline{Y} \mathbf{1} \rangle}{\langle \mathbf{X} - \overline{X} \mathbf{1}, \mathbf{X} - \overline{X} \mathbf{1} \rangle} = \frac{\langle \mathbf{X} - \overline{X} \mathbf{1}, \mathbf{Y} \rangle}{\langle \mathbf{X} - \overline{X} \mathbf{1}, \mathbf{X} - \overline{X} \mathbf{1} \rangle}$$

- How can we get this?
 - 1. Regress **X** on **1** to get coefficient \overline{X}
 - 2. Regress **Y** on residuals from step 1, $\mathbf{X} \overline{X}\mathbf{1}$
- If wanted to get coefficient on added variable Z_i , we could repeat this:
 - 1. Regress Z on $\widetilde{X} = X \overline{X}1$ on and obtain coefficient $\langle Z, \widetilde{X} \rangle / \langle \widetilde{X}, \widetilde{X} \rangle$
 - 2. Regress Y on residual from

Visualizing orthogonalization

FIGURE 3.4. Least squares regression by orthogonalization of the inputs. The vector \mathbf{x}_2 is regressed on the vector \mathbf{x}_1 , leaving the residual vector \mathbf{z} . The regression of \mathbf{y} on \mathbf{z} gives the multiple regression coefficient of \mathbf{x}_2 . Adding together the projections of \mathbf{y} on each of \mathbf{x}_1 and \mathbf{z} gives the least squares fit $\hat{\mathbf{y}}$.

Why does residual regression work?

• We can find $\hat{\pmb{\beta}}_1$ by nested minimization:

$$\hat{\boldsymbol{\beta}}_1 = \operatorname*{arg\,min}_{\boldsymbol{\beta}_1} \left(\underset{\boldsymbol{\beta}_2}{\min} \| \boldsymbol{Y} - \mathbb{X}_1 \boldsymbol{\beta}_1 - \mathbb{X}_2 \boldsymbol{\beta}_2 \|^2 \right)$$

- First find the minimum of the SSR over $\pmb{\beta}_2$ fixing $\pmb{\beta}_1$
- Then find $\pmb{\beta}_1$ that minimizes the resulting SSR.
- The projection and annihilator matrices are defined only by covariates.
 - $\bullet \ \mathbf{M}_2 = \mathbf{I}_n \mathbb{X}_2 (\mathbb{X}_2' \mathbb{X}_2)^{-1} \mathbb{X}_2'$
 - + Creates residuals from a regression on or \mathbb{X}_2
- Solving the nested minimization gives:

$$\hat{\pmb{\beta}}_1 = \left(\mathbb{X}_1'\mathbf{M}_2\mathbb{X}_1\right)^{-1}\left(\mathbb{X}_1'\mathbf{M}_2\mathbf{Y}\right)$$

- When will $\hat{oldsymbol{eta}}_1$ will be the same regardless of whether \mathbb{X}_2 is included?
 - If \mathbb{X}_1 and \mathbb{X}_2 are orthogonal so $\mathbb{X}_2'\mathbb{X}_1=0$ so $\textbf{M}_2\mathbb{X}_1=\mathbb{X}_1$

Residual regression

- Define two sets of residuals:
 - + $\widetilde{\mathbb{X}}_2=\mathbf{M}_1\mathbb{X}_2$ = residuals from regression of \mathbb{X}_2 on \mathbb{X}_1
 - + $\tilde{\textbf{e}}_1 = \textbf{M}_1\textbf{Y}$ = residuals from regression of Y on $\mathbb{X}_1.$
- Then remembering that \mathbf{M}_1 is symmetric and idempotent:

$$\begin{split} \hat{\pmb{\beta}}_2 &= \left(\mathbb{X}_2' \mathbf{M}_1 \mathbb{X}_2\right)^{-1} \left(\mathbb{X}_2' \mathbf{M}_1 \mathbf{Y}\right) \\ &= \left(\mathbb{X}_2' \mathbf{M}_1 \mathbf{M}_1 \mathbb{X}_2\right)^{-1} \left(\mathbb{X}_2' \mathbf{M}_1 \mathbf{M}_1 \mathbf{Y}\right) \\ &= \left(\widetilde{\mathbb{X}}_2' \widetilde{\mathbb{X}}_2\right)^{-1} \left(\widetilde{\mathbb{X}}_2' \widetilde{\mathbf{e}}_1\right) \end{split}$$

- $\hat{\boldsymbol{\beta}}_2$ can be obtained from a regression of $\tilde{\mathbf{e}}_1$ on $\widetilde{\mathbb{X}}_2$.
 - Same result applies when using \boldsymbol{Y} in place of $\boldsymbol{\tilde{e}}_1.$
 - Intuition: residuals are orthogonal
 - Called the Frisch-Waugh-Lovell Theorem
 - Sample version of the results we saw for the linear projection.

5/ Influential observations

Outliers, leverage points, and influential observations

- Least square heavily penalizes large residuals.
- Implies a just a few unusual observations can be extremely influential.
 - Dropping them leads to large changes in the estimated $\hat{\pmb{\beta}}$.
 - Not all "unusual" observations have the same effect, though.
- Useful to categorize:
 - 1. Leverage point: extreme in one X direction
 - 2. Outlier: extreme in the Y direction
 - 3. Influence point: extreme in both directions

Example: Buchanan votes in Florida, 2000

• 2000 Presidential election in FL (Wand et al., 2001, APSR)

Example: Buchanan votes in Florida, 2000

Example: Buchanan votes in Florida, 2000

mod <- lm(edaybuchanan ~ edaytotal, data = flvote)
summary(mod)</pre>

```
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 54.22945 49.14146 1.10 0.27
## edaytotal 0.00232 0.00031 7.48 2.4e-10 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 333 on 65 degrees of freedom
## Multiple R-squared: 0.463, Adjusted R-squared: 0.455
## F-statistic: 56 on 1 and 65 DF, p-value: 2.42e-10
```

Leverage point definition

- Values that are extreme in the X dimension
- That is, values far from the center of the covariate distribution

Leverage values

• Let h_{ij} be the (i, j) entry of **P**. Then:

$$\widehat{\mathbf{Y}} = \mathbf{P}\mathbf{Y} \qquad \Longrightarrow \qquad \widehat{Y}_i = \sum_{j=1}^n h_{ij}Y_j$$

• $h_{ij} = \text{importance of observation } j \text{ is for the fitted value } \widehat{Y}_i$

- Leverage/hat values: h_{ii} diagonal entries of the hat matrix
- With a simple linear regression, we have

$$h_{ii} = \frac{1}{n} + \frac{(X_i - \overline{X})^2}{\sum_{j=1}^n (X_j - \overline{X})^2}$$

- ~> how far *i* is from the center of the *X* distribution
- Rule of thumb: examine hat values greater than 2(k+1)/n

head(hatvalues(mod), 5)

1 2 3 4 5 ## 0.0418 0.0228 0.2207 0.0156 0.0149

Outlier definition

- An **outlier** is far away from the center of the Y distribution.
- Intuitively: a point that would be poorly predicted by the regression.

Detecting outliers

- Want values poorly predicted? Look for big residuals, right?
 - Problem: we use *i* to estimate $\hat{\beta}$ so $\hat{\mathbf{Y}}$ aren't valid predctions.
 - unit might pull the regression line toward itself \rightsquigarrow small residual
- Better: leave-one-out prediction errors,
 - 1. Regress $\mathbf{Y}_{(-i)}$ on $\mathbb{X}_{(-i)}$, where these omit unit *i*:

$$\hat{\boldsymbol{\beta}}_{(-i)} = \left(\mathbb{X}_{(-i)}' \mathbb{X}_{(-i)} \right)^{-1} \mathbb{X}_{(-i)} \mathbf{Y}_{(-i)}$$

- 2. Calculate predicted value of Y_i using that regression: $\widetilde{Y}_i = \mathbf{X}'_i \hat{\boldsymbol{\beta}}_{(-i)}$
- 3. Calculate prediction error: $\tilde{e}_i = Y_i \widetilde{Y}_i$
- Simple closed-form expressions:

$$\hat{oldsymbol{eta}}_{(-i)} = \hat{oldsymbol{eta}} - \left(\mathbb{X}'\mathbb{X}
ight)^{-1} oldsymbol{\mathsf{X}}_i ilde{e}_i \qquad ilde{e}_i = rac{\hat{e}_i}{1-h_{ii}}$$

Influence points

- An influence point is one that is both an outlier and a leverage point.
- Extreme in both the X and Y dimensions

• Influence of *i* can be measured by change in predictions:

$$\widehat{Y}_i - \widetilde{Y}_i = h_{ii}\widetilde{e}_i$$

- How much does excluding *i* from the regression change its predicted value?
- + Equal to "leverage \times outlier-ness"
- Lots of diagnostics exist, but are mostly heuristic.
 - Does removing the point change a coefficient by a lot?

Limitations of the standard tools

- What happens when there are two influence points?
- Red line drops the red influence point
- Blue line drops the blue influence point

What to do about outliers and influential units?

- Is the data corrupted?
 - Fix the observation (obvious data entry errors)
 - Remove the observation
 - Be transparent either way
- Is the outlier part of the data generating process?
 - Transform the dependent variable (log(y))
 - Use a method that is robust to outliers (robust regression, least absolute deviations)