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Where are we? Where are we going?

• We saw how the population linear projection works.

• How can we estimate the parameters of the linear projection or CEF?

• Now: least squares estimator and its algebraic properties.

• After that: the statistical properties of least squares.
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Acemoglu, Johnson, and Robinson (2001)
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1/ Deriving the OLS
estimator



Samples vs population

Assumption

The variables {(𝘠𝟣, 𝗫𝟣), … , (𝘠𝘪 , 𝗫𝘪 ), … , (𝘠𝘯, 𝗫𝘯)} are i.i.d. draws from a
common distribution 𝘍 .

• 𝘍 is the population distribution or DGP.

• Without 𝘪 subscripts, (𝘠 , 𝗫) are r.v.s and draws from 𝘍 .

• {(𝘠𝘪 , 𝗫𝘪 ) ∶ 𝘪 = 𝟣, … , 𝘯} is the sample and can be seen in two ways:

• Numbers in your data matrix, fixed to the analyst.
• From a statistical POV, they are realizations of a random process.

• Violations include time-series data and clustered sampling.

• Weakening i.i.d. usually complicates notation but can be done.
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Quantity of interest

• Population linear projection model:

𝘠 = 𝗫′𝜷 + 𝘦

• Here 𝜷 minimizes the population expected squared error:

𝜷 = argmin
𝗯∈ℝ𝘬

𝘚(𝗯), 𝘚(𝗯) = 𝔼 [(𝘠 − 𝗫′𝗯)𝟤]

• Last time we saw that this can be written:

𝜷 = (𝔼[𝗫𝗫′])−𝟣 𝔼[𝗫𝘠 ]

• How do we estimate 𝜷?
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Which line is better?
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Plug-in principle returns!

• Plug-in estimator: solve the sample version of the population goal.

• Replace projection errors with observed errors, or residuals: 𝘠𝘪 − 𝗫′
𝘪 𝗯

• Sum of squared residuals, 𝘚𝘚𝘙(𝗯) = ∑𝘯
𝘪=𝟣(𝘠𝘪 − 𝗫′

𝘪 𝗯)𝟤.
• Total prediction error using 𝗯 as our estimated coefficient.

• We can use these residuals to get a sample average prediction error:

̂𝘚(𝗯) = 𝟣
𝘯

𝘯
∑
𝘪=𝟣

(𝘠𝘪 − 𝗫′
𝘪 𝗯)𝟤 = 𝟣

𝘯 𝘚𝘚𝘙(𝗯)

• ̂𝘚(𝗯) is an estimator of the expected squared error, 𝘚(𝗯).
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Least squares estimator
• Ordinary least squares estimator minimizes ̂𝘚 in place of 𝘚 .

𝜷 = argmin
𝗯∈ℝ𝘬

𝔼 [(𝘠 − 𝗫′𝗯)𝟤]

̂𝜷 = argmin
𝗯∈ℝ𝘬

𝟣
𝘯

𝘯
∑
𝘪=𝟣

(𝘠𝘪 − 𝗫′
𝘪 𝗯)𝟤

• In words: find the coefficients that minimize the sum/average of the
squared residuals.

• After some calculus, we can write this as a plug-in estimator:

̂𝜷 = ( 𝟣
𝘯

𝘯
∑
𝘪=𝟣

𝗫𝘪𝗫′
𝘪 )

−𝟣

( 𝟣
𝘯

𝘯
∑
𝘪=𝟣

𝗫𝘪𝘠𝘪)

• 𝘯−𝟣 ∑𝘯
𝘪=𝟣 𝗫𝘪 𝗫′

𝘪 is the sample version of 𝔼[𝗫𝗫′]
• 𝘯−𝟣 ∑𝘯

𝘪=𝟣 𝗫𝘪 𝘠𝘪 is the sample version of 𝔼[𝗫𝘠 ]
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Bivariate regressions

• Bivariate regression is the linear projection model with 𝗫 = (𝟣, 𝘟):

𝘠 = 𝛽𝟢 + 𝘟𝛽𝟣 + 𝘦

• Linear projection slope in the population from last times:

𝛽𝟣 = Cov(𝘟, 𝘠 )
𝕍[𝘟]

• We can show the OLS estimator of the slope is:

̂𝛽𝟣 = ∑𝘯
𝘪=𝟣(𝘠𝘪 − 𝘠 )(𝘟𝘪 − 𝘟)

∑𝘯
𝘪=𝟣(𝘟𝘪 − 𝘟)𝟤 = Ĉov(𝘟, 𝘠 )

�̂�[𝘟 ]
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Bivariate regressions

• Bivariate regression is the linear projection model with 𝗫 = (𝟣, 𝘟):
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Visualizing OLS
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Residuals
• Fitted value 𝘠𝘪 = 𝗫′

𝘪 ̂𝜷 is what the model predicts at 𝗫𝘪

• Not really a prediction for 𝘠𝘪 since that was used to generate ̂𝜷

• Residuals are the difference between observed and fitted values:

̂𝘦𝘪 = 𝘠𝘪 − 𝘠𝘪 = 𝘠𝘪 − 𝗫′
𝘪 ̂𝜷

• We can write 𝘠𝘪 = 𝗫′
𝘪 ̂𝜷 + ̂𝘦𝘪 .

• ̂𝘦𝘪 are not the true errors 𝘦𝘪

• Key mechanical properties of OLS residuals:

𝘯
∑
𝘪=𝟣

𝗫𝘪 ̂𝘦𝘪 = 𝟢

• Sample covariance between 𝗫𝘪 and ̂𝘦𝘪 is 0.
• If 𝗫𝘪 has a constant, then 𝘯−𝟣 ∑𝘯

𝘪=𝟣 ̂𝘦𝘪 = 𝟢

11 / 43
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2/ Model fit



Prediction error
• How do we judge how well a regression fits the data?

• How much does 𝗫𝘪 help us predict 𝘠𝘪?

• Prediction errors without 𝗫𝘪 :

• Best prediction is the mean, 𝘠
• Prediction error is called the total sum of squares (𝘛𝘚𝘚) would be:

𝘛𝘚𝘚 =
𝘯

∑
𝘪=𝟣

(𝘠𝘪 − 𝘠 )𝟤

• Prediction errors with 𝗫𝘪 :

• Best predictions are the fitted values, 𝘠𝘪 .
• Prediction error is the sum of the squared residuals or 𝘚𝘚𝘙 :

𝘚𝘚𝘙 =
𝘯

∑
𝘪=𝟣

(𝘠𝘪 − 𝘠𝘪 )𝟤
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R-squared

• Regression will always improve in-sample fit: 𝘛𝘚𝘚 > 𝘚𝘚𝘙

• How much better does using 𝗫𝘪 do? Coefficient of determination or 𝘙𝟤:

𝘙𝟤 = 𝘛𝘚𝘚 − 𝘚𝘚𝘙
𝘛𝘚𝘚 = 𝟣 − 𝘚𝘚𝘙

𝘛𝘚𝘚

• 𝘙𝟤 = fraction of the total prediction error eliminated by using 𝗫𝘪 .

• Common interpretation: 𝘙𝟤 is the fraction of the variation in 𝘠𝘪 is
“explained by” 𝗫𝘪 .

• 𝘙𝟤 = 𝟢 means no relationship
• 𝘙𝟤 = 𝟣 implies perfect linear fit

• Mechanically increases with additional covariates (better fit measures
exist)
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3/ Geometry of OLS



Linear model in matrix form
• Linear model is a system of 𝘯 linear equations:

𝘠𝟣 = 𝗫′
𝟣𝜷 + 𝘦𝟣

𝘠𝟤 = 𝗫′
𝟤𝜷 + 𝘦𝟤

⋮
𝘠𝘯 = 𝗫′

𝘯𝜷 + 𝘦𝘯

• We can write this more compactly using matrices and vectors:

𝗬 =
⎛⎜⎜⎜⎜⎜
⎝

𝘠𝟣
𝘠𝟤
⋮

𝘠𝘯

⎞⎟⎟⎟⎟⎟
⎠

, 𝕏 =
⎛⎜⎜⎜⎜⎜
⎝

𝗫′
𝟣

𝗫′
𝟤
⋮

𝗫′
𝘯

⎞⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜
⎝

𝟣 𝘟𝟣𝟣 𝘟𝟣𝟤 ⋯ 𝘟𝟣𝘬
𝟣 𝘟𝟤𝟣 𝘟𝟤𝟤 ⋯ 𝘟𝟤𝘬
⋮ ⋮ ⋮ ⋮ ⋮
𝟣 𝘟𝘯𝟣 𝘟𝘯𝟤 ⋯ 𝘟𝘯𝘬

⎞⎟⎟⎟⎟⎟
⎠

, 𝗲 =
⎛⎜⎜⎜⎜⎜
⎝

𝘦𝟣
𝘦𝟤
⋮

𝘦𝘯

⎞⎟⎟⎟⎟⎟
⎠

• Model is now just:
𝗬 = 𝕏𝜷 + 𝗲
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OLS estimator in matrix form
• Key relationship: sample sums can be written in matrix notation:

𝘯
∑
𝘪=𝟣

𝗫𝘪𝗫′
𝘪 = 𝕏′𝕏

𝘯
∑
𝘪=𝟣

𝗫𝘪𝘠𝘪 = 𝕏′𝗬

• Implies we can write the OLS estimator as

̂𝜷 = (𝕏′𝕏)−𝟣 𝕏′𝗬

• Residuals:

̂𝗲 = 𝗬 − 𝕏 ̂𝜷 =
⎡
⎢⎢⎢
⎣

𝘠𝟣
𝘠𝟤
⋮

𝘠𝘯

⎤
⎥⎥⎥
⎦

−
⎡
⎢⎢⎢
⎣

𝟣 ̂𝛽𝟢 + 𝘟𝟣𝟣 ̂𝛽𝟣 + 𝘟𝟣𝟤 ̂𝛽𝟤 + ⋯ + 𝘟𝟣𝘬 ̂𝛽𝘬
𝟣 ̂𝛽𝟢 + 𝘟𝟤𝟣 ̂𝛽𝟣 + 𝘟𝟤𝟤 ̂𝛽𝟤 + ⋯ + 𝘟𝟤𝘬 ̂𝛽𝘬

⋮
𝟣 ̂𝛽𝟢 + 𝘟𝘯𝟣 ̂𝛽𝟣 + 𝘟𝘯𝟤 ̂𝛽𝟤 + ⋯ + 𝘟𝘯𝘬 ̂𝛽𝘬

⎤
⎥⎥⎥
⎦
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Projection/hat matrix

• We can define the transformation of 𝗬 that does the projection.

𝕏 ̂𝜷 = 𝕏(𝕏′𝕏)−𝟣𝕏′𝗬

• Projection matrix
𝗣 = 𝕏(𝕏′𝕏)−𝟣𝕏′

• Also called the hat matrix it puts the “hat” on 𝗬:

𝗣𝗬 = 𝕏(𝕏′𝕏)−𝟣𝕏′𝗬 = 𝕏 ̂𝜷 = �̂�

• Key properties:

• 𝗣 is an 𝘯 × 𝘯 symmetric matrix
• 𝗣 is idempotent: 𝗣𝗣 = 𝗣
• Projecting 𝕏 onto itself returns itself: 𝗣𝕏 = 𝕏

18 / 43



Projection/hat matrix

• We can define the transformation of 𝗬 that does the projection.

𝕏 ̂𝜷 = 𝕏(𝕏′𝕏)−𝟣𝕏′𝗬

• Projection matrix
𝗣 = 𝕏(𝕏′𝕏)−𝟣𝕏′

• Also called the hat matrix it puts the “hat” on 𝗬:

𝗣𝗬 = 𝕏(𝕏′𝕏)−𝟣𝕏′𝗬 = 𝕏 ̂𝜷 = �̂�

• Key properties:

• 𝗣 is an 𝘯 × 𝘯 symmetric matrix
• 𝗣 is idempotent: 𝗣𝗣 = 𝗣
• Projecting 𝕏 onto itself returns itself: 𝗣𝕏 = 𝕏

18 / 43



Projection/hat matrix

• We can define the transformation of 𝗬 that does the projection.

𝕏 ̂𝜷 = 𝕏(𝕏′𝕏)−𝟣𝕏′𝗬

• Projection matrix
𝗣 = 𝕏(𝕏′𝕏)−𝟣𝕏′

• Also called the hat matrix it puts the “hat” on 𝗬:

𝗣𝗬 = 𝕏(𝕏′𝕏)−𝟣𝕏′𝗬 = 𝕏 ̂𝜷 = �̂�

• Key properties:

• 𝗣 is an 𝘯 × 𝘯 symmetric matrix
• 𝗣 is idempotent: 𝗣𝗣 = 𝗣
• Projecting 𝕏 onto itself returns itself: 𝗣𝕏 = 𝕏

18 / 43



Projection/hat matrix

• We can define the transformation of 𝗬 that does the projection.

𝕏 ̂𝜷 = 𝕏(𝕏′𝕏)−𝟣𝕏′𝗬

• Projection matrix
𝗣 = 𝕏(𝕏′𝕏)−𝟣𝕏′

• Also called the hat matrix it puts the “hat” on 𝗬:

𝗣𝗬 = 𝕏(𝕏′𝕏)−𝟣𝕏′𝗬 = 𝕏 ̂𝜷 = �̂�

• Key properties:

• 𝗣 is an 𝘯 × 𝘯 symmetric matrix
• 𝗣 is idempotent: 𝗣𝗣 = 𝗣
• Projecting 𝕏 onto itself returns itself: 𝗣𝕏 = 𝕏

18 / 43



Projection/hat matrix

• We can define the transformation of 𝗬 that does the projection.

𝕏 ̂𝜷 = 𝕏(𝕏′𝕏)−𝟣𝕏′𝗬

• Projection matrix
𝗣 = 𝕏(𝕏′𝕏)−𝟣𝕏′

• Also called the hat matrix it puts the “hat” on 𝗬:

𝗣𝗬 = 𝕏(𝕏′𝕏)−𝟣𝕏′𝗬 = 𝕏 ̂𝜷 = �̂�

• Key properties:

• 𝗣 is an 𝘯 × 𝘯 symmetric matrix

• 𝗣 is idempotent: 𝗣𝗣 = 𝗣
• Projecting 𝕏 onto itself returns itself: 𝗣𝕏 = 𝕏

18 / 43



Projection/hat matrix

• We can define the transformation of 𝗬 that does the projection.

𝕏 ̂𝜷 = 𝕏(𝕏′𝕏)−𝟣𝕏′𝗬

• Projection matrix
𝗣 = 𝕏(𝕏′𝕏)−𝟣𝕏′

• Also called the hat matrix it puts the “hat” on 𝗬:

𝗣𝗬 = 𝕏(𝕏′𝕏)−𝟣𝕏′𝗬 = 𝕏 ̂𝜷 = �̂�

• Key properties:

• 𝗣 is an 𝘯 × 𝘯 symmetric matrix
• 𝗣 is idempotent: 𝗣𝗣 = 𝗣

• Projecting 𝕏 onto itself returns itself: 𝗣𝕏 = 𝕏

18 / 43



Projection/hat matrix

• We can define the transformation of 𝗬 that does the projection.

𝕏 ̂𝜷 = 𝕏(𝕏′𝕏)−𝟣𝕏′𝗬

• Projection matrix
𝗣 = 𝕏(𝕏′𝕏)−𝟣𝕏′

• Also called the hat matrix it puts the “hat” on 𝗬:

𝗣𝗬 = 𝕏(𝕏′𝕏)−𝟣𝕏′𝗬 = 𝕏 ̂𝜷 = �̂�

• Key properties:

• 𝗣 is an 𝘯 × 𝘯 symmetric matrix
• 𝗣 is idempotent: 𝗣𝗣 = 𝗣
• Projecting 𝕏 onto itself returns itself: 𝗣𝕏 = 𝕏

18 / 43



Annihilator matrix
• Annihilator matrix projects onto the space spanned by the residual:

𝗠 = 𝗜𝘯 − 𝗣 = 𝗜𝘯 − 𝕏(𝕏′𝕏)−𝟣𝕏′

• Also called the residual maker:

𝗠𝗬 = (𝗜𝘯 − 𝗣)𝗬 = 𝗬 − 𝗣𝗬 = 𝗬 − �̂� = ̂𝗲

• “Annihilates” any function in the column space of 𝕏, 𝒞(𝕏):
𝗠𝕏 = (𝗜𝘯 − 𝗣)𝕏 = 𝕏 − 𝗣𝕏 = 𝕏 − 𝕏 = 𝟢

• Properties:

• 𝗠 is a symmetric 𝘯 × 𝘯 matrix and is idempotent 𝗠𝗠 = 𝗠
• Admits a nice expression for the residual vector: ̂𝗲 = 𝗠𝗲

• Allows the following orthogonal partition:

𝗬 = 𝗣𝗬 + 𝗠𝗬 = projection+ residual
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Geometric view of OLS
• Recall the length of a vector: ‖ ̂𝗮‖ = √ ̂𝘢𝟣

𝟣 + ⋯ + ̂𝘢𝟤𝘯

• Distance between two vectors: ‖𝗮 − 𝗯‖ = √(𝘢𝟣 − 𝘣𝟣)𝟤 + ⋯ + (𝘢𝘯 − 𝘣𝘯)𝟤

• We can rewrite the OLS estimator as:

̂𝜷 = argmin
𝗯∈ℝ𝘬+𝟣

‖𝗬 − 𝕏𝗯‖𝟤 = argmin
𝗯∈ℝ𝘬+𝟣

𝘯
∑
𝘪=𝟣

(𝘠𝘪 − 𝗫′
𝘪 𝗯)𝟤

• Let 𝒞(𝕏) = {𝕏𝗯 ∶ 𝗯 ∈ ℝ𝘬+𝟣} be the column space of 𝕏

• All 𝘯-vectors formed as a linear combination of the columns of 𝕏.
• 𝘬 + 𝟣-dimensional subspace of ℝ𝘯

• This is the space that OLS is searching over!

• Geometrically OLS is:

• Find coefficients that minimize distance between the 𝗬 and 𝕏𝗯.
• Find the point in 𝒞(𝕏) that is closest to 𝗬
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Projection
 

• Finding closest point in 𝒞(𝕏) to 𝗬 is
called projection

• Example: 𝘯 = 𝟥 and 𝘬 = 𝟤: points in
3D space.

• Column space of 𝕏 is a plane in
this space.

• Residual vector ̂𝗲 = 𝗬 − 𝕏 ̂𝜷 is
orthogonal to 𝒞(𝕏)

• Shortest distance from 𝗬 to 𝒞(𝕏)
is a straight line to the plane,
which will be perpendicular to
𝒞(𝕏).

• Implies that 𝕏′ ̂𝗲 = 𝟢
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orthogonal to 𝒞(𝕏)

• Shortest distance from 𝗬 to 𝒞(𝕏)
is a straight line to the plane,
which will be perpendicular to
𝒞(𝕏).

• Implies that 𝕏′ ̂𝗲 = 𝟢
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Multicollinearity

• Hidden assumption: 𝕏′𝕏 = ∑𝘯
𝘪=𝟣 𝗫𝘪𝗫′

𝘪 is invertible.

• Equivalent to 𝕏 being full column rank.
• Equivalent to columns of 𝕏 being linearly independent

• Full column rank if 𝕏𝗯 = 𝟢 if and only if 𝗯 = 𝟬.

𝘣𝟣𝕏𝟣 + 𝘣𝟤𝕏𝟤 + ⋯ + 𝘣𝘬+𝟣𝕏𝘬+𝟣 = 𝟢 ⟺ 𝘣𝟣 = 𝘣𝟤 = ⋯ = 𝘣𝘬+𝟣 = 𝟢,

• Typically reasonable but can be violated by user error:

• Accidentally adding the same variable twice.
• Including all dummies for a categorical variable.
• Including fixed effects for group and variables that do not vary within
groups.
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4/ Partitioned regression
and partial regression



Partitioned regression

• Partition covariates and coefficients 𝕏 = [𝕏𝟣 𝕏𝟤] and 𝜷 = (𝜷𝟣, 𝜷𝟤)′:

𝗬 = 𝕏𝟣𝜷𝟣 + 𝕏𝟤𝜷𝟤 + 𝗲

• Can we find expressions for ̂𝜷𝟣 and ̂𝜷𝟤?

• Residual regression or Frisch-Waugh-Lovell theorem to obtain ̂𝜷𝟣:

• Use OLS to regress 𝗬 on 𝕏𝟤 and obtain residuals ̃𝗲𝟤.
• Use OLS to regress each column of 𝕏𝟣 on 𝕏𝟤 and obtain residuals �̃�𝟣.
• Use OLS to regress ̃𝗲𝟤 on �̃�𝟣
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Focus on simple case

• Focus on single covariate model with no intercept: 𝘠𝘪 = 𝘟𝘪𝛽 + 𝘦𝘪

• Let 𝗫 = (𝘟𝟣, … , 𝘟𝘯) and recall inner product: ⟨𝗫, 𝗬⟩ = ∑𝘯
𝘪=𝟣 𝘟𝘪𝘠𝘪

• Inner products measure how similar two vectors are.

• Slope in this case:
̂𝛽 = ∑𝘯

𝘪=𝟣 𝘟𝘪𝘠𝘪
∑𝘯

𝘪=𝟣 𝘟 𝟤
𝘪

= ⟨𝗫, 𝗬⟩
⟨𝗫, 𝗫⟩

• Suppose we add an orthogonal covariate 𝗬 = 𝗫𝛽 + 𝗭𝛾 + 𝗲 with
⟨𝗫, 𝗭⟩ = 𝟢.

̂𝛽 = ⟨𝗫, 𝗬⟩
⟨𝗫, 𝗫⟩ 𝛾 = ⟨𝗭, 𝗬⟩

⟨𝗭, 𝗭⟩

• With exactly orthogonal covariates, multivariate OLS is the same as
univariate OLS.

• Only holds in balanced, designed experiments.
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Adding the intercept

• Consider the OLS slope with an intercept:

̂𝛽 = ∑𝘯
𝘪=𝟣(𝘟𝘪 − 𝘟)(𝘠𝘪 − 𝘠 )

∑𝘯
𝘪=𝟣(𝘟𝘪 − 𝘟) = ⟨𝗫 − 𝘟𝟭, 𝗬 − 𝘠 𝟭⟩

⟨𝗫 − 𝘟𝟭, 𝗫 − 𝘟𝟭⟩ = ⟨𝗫 − 𝘟𝟭, 𝗬⟩
⟨𝗫 − 𝘟𝟭, 𝗫 − 𝘟𝟭⟩

• How can we get this?

1. Regress 𝗫 on 𝟭 to get coefficient 𝘟
2. Regress 𝗬 on residuals from step 1, 𝗫 − 𝘟𝟭

• If wanted to get coefficient on added variable 𝘡𝘪 , we could repeat this:
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Visualizing orthogonalization
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Why does residual regression work?
• We can find ̂𝜷𝟣 by nested minimization:

̂𝜷𝟣 = argmin
𝜷𝟣

(min
𝜷𝟤

‖𝗬 − 𝕏𝟣𝜷𝟣 − 𝕏𝟤𝜷𝟤‖𝟤)

• First find the minimum of the SSR over 𝜷𝟤 fixing 𝜷𝟣
• Then find 𝜷𝟣 that minimizes the resulting SSR.

• The projection and annihilator matrices are defined only by covariates.

• 𝗠𝟤 = 𝗜𝘯 − 𝕏𝟤(𝕏′
𝟤𝕏𝟤)−𝟣𝕏′

𝟤
• Creates residuals from a regression on or 𝕏𝟤

• Solving the nested minimization gives:

̂𝜷𝟣 = (𝕏′
𝟣𝗠𝟤𝕏𝟣)−𝟣 (𝕏′

𝟣𝗠𝟤𝗬)

• When will ̂𝜷𝟣 will be the same regardless of whether 𝕏𝟤 is included?

• If 𝕏𝟣 and 𝕏𝟤 are orthogonal so 𝕏′
𝟤𝕏𝟣 = 𝟢 so 𝗠𝟤𝕏𝟣 = 𝕏𝟣
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Residual regression
• Define two sets of residuals:

• �̃�𝟤 = 𝗠𝟣𝕏𝟤 = residuals from regression of 𝕏𝟤 on 𝕏𝟣
• ̃𝗲𝟣 = 𝗠𝟣𝗬 = residuals from regression of 𝗬 on 𝕏𝟣.

• Then remembering that 𝗠𝟣 is symmetric and idempotent:

̂𝜷𝟤 = (𝕏′
𝟤𝗠𝟣𝕏𝟤)−𝟣 (𝕏′

𝟤𝗠𝟣𝗬)
= (𝕏′

𝟤𝗠𝟣𝗠𝟣𝕏𝟤)−𝟣 (𝕏′
𝟤𝗠𝟣𝗠𝟣𝗬)

= (�̃�′
𝟤�̃�𝟤)

−𝟣
(�̃�′

𝟤 ̃𝗲𝟣)

• ̂𝜷𝟤 can be obtained from a regression of ̃𝗲𝟣 on �̃�𝟤.

• Same result applies when using 𝗬 in place of ̃𝗲𝟣.
• Intuition: residuals are orthogonal
• Called the Frisch-Waugh-Lovell Theorem
• Sample version of the results we saw for the linear projection.
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5/ Influential observations



Outliers, leverage points, and influential
observations

• Least square heavily penalizes large residuals.

• Implies a just a few unusual observations can be extremely influential.

• Dropping them leads to large changes in the estimated ̂𝜷.
• Not all “unusual” observations have the same effect, though.

• Useful to categorize:

1. Leverage point: extreme in one 𝘟 direction
2. Outlier: extreme in the 𝘠 direction
3. Influence point: extreme in both directions
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Example: Buchanan votes in Florida, 2000
• 2000 Presidential election in FL (Wand et al., 2001, APSR)
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Example: Buchanan votes

mod <- lm(edaybuchanan ~ edaytotal, data = flvote)
summary(mod)

##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 54.22945 49.14146 1.10 0.27
## edaytotal 0.00232 0.00031 7.48 2.4e-10 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 333 on 65 degrees of freedom
## Multiple R-squared: 0.463, Adjusted R-squared: 0.455
## F-statistic: 56 on 1 and 65 DF, p-value: 2.42e-10
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Leverage point definition
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• Values that are extreme in the 𝘟 dimension

• That is, values far from the center of the covariate distribution
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Leverage values
• Let 𝘩𝘪 𝘫 be the (𝘪 , 𝘫) entry of 𝗣. Then:

�̂� = 𝗣𝗬 ⟹ 𝘠𝘪 =
𝘯

∑
𝘫=𝟣

𝘩𝘪 𝘫𝘠𝘫

• 𝘩𝘪 𝘫 = importance of observation 𝘫 is for the fitted value 𝘠𝘪

• Leverage/hat values: 𝘩𝘪 𝘪 diagonal entries of the hat matrix

• With a simple linear regression, we have

𝘩𝘪 𝘪 = 𝟣
𝘯 + (𝘟𝘪 − 𝘟)𝟤

∑𝘯
𝘫=𝟣(𝘟𝘫 − 𝘟)𝟤

• ⇝ how far 𝘪 is from the center of the 𝘟 distribution

• Rule of thumb: examine hat values greater than 𝟤(𝘬 + 𝟣)/𝘯
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Buchanan hats

head(hatvalues(mod), 5)

## 1 2 3 4 5
## 0.0418 0.0228 0.2207 0.0156 0.0149
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Buchanan hats
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Outlier definition
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• An outlier is far away from the center of the 𝘠 distribution.

• Intuitively: a point that would be poorly predicted by the regression.
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Detecting outliers
• Want values poorly predicted? Look for big residuals, right?

• Problem: we use 𝘪 to estimate ̂𝜷 so �̂� aren’t valid predctions.
• unit might pull the regression line toward itself⇝ small residual

• Better: leave-one-out prediction errors,

1. Regress 𝗬(−𝘪) on 𝕏(−𝘪), where these omit unit 𝘪 :

̂𝜷(−𝘪) = (𝕏′
(−𝘪)𝕏(−𝘪))

−𝟣 𝕏(−𝘪)𝗬(−𝘪)

2. Calculate predicted value of 𝘠𝘪 using that regression: 𝘠𝘪 = 𝗫′
𝘪 ̂𝜷(−𝘪)

3. Calculate prediction error: ̃𝘦𝘪 = 𝘠𝘪 − 𝘠𝘪

• Simple closed-form expressions:

̂𝜷(−𝘪) = ̂𝜷 − (𝕏′𝕏)−𝟣 𝗫𝘪 ̃𝘦𝘪 ̃𝘦𝘪 = ̂𝘦𝘪
𝟣 − 𝘩𝘪 𝘪
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Influence points
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• An influence point is one that is both an outlier and a leverage point.

• Extreme in both the 𝘟 and 𝘠 dimensions
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Overall measures of influence

• Influence of 𝘪 can be measured by change in predictions:

𝘠𝘪 − 𝘠𝘪 = 𝘩𝘪 𝘪 ̃𝘦𝘪

• How much does excluding 𝘪 from the regression change its predicted
value?

• Equal to “leverage × outlier-ness”
• Lots of diagnostics exist, but are mostly heuristic.

• Does removing the point change a coefficient by a lot?
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Limitations of the standard tools
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• What happens when there are two influence points?

• Red line drops the red influence point

• Blue line drops the blue influence point

42 / 43



Limitations of the standard tools

0 2 4 6 8

-1.0

-0.5

0.0

0.5

1.0

1.5

y

• What happens when there are two influence points?

• Red line drops the red influence point

• Blue line drops the blue influence point

42 / 43



Limitations of the standard tools

0 2 4 6 8

-1.0

-0.5

0.0

0.5

1.0

1.5

y

• What happens when there are two influence points?

• Red line drops the red influence point

• Blue line drops the blue influence point

42 / 43



What to do about outliers and influential units?

• Is the data corrupted?

• Fix the observation (obvious data entry errors)
• Remove the observation
• Be transparent either way

• Is the outlier part of the data generating process?

• Transform the dependent variable (log(𝘺))
• Use a method that is robust to outliers (robust regression, least
absolute deviations)
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