11. (Linear) Regression

Fall 2023

Matthew Blackwell
Gov 2002 (Harvard)

Where are we? Where are we going?

- Learned about estimation and inference in general.
- Now: building to a specific estimator, least squares regression.
- First we need to understand what a "linear model" is and when/why we need it.
- No estimators quite yet. First, let's understand what we are estimating.
- Linear model is ubiquitous but poorly understood. Lots of subtlety here.

Regression derivatives and partial effects

- Goal of regression: how mean of Y changes with X.

$$
\mu(\mathbf{x})=\mathbb{E}[Y \mid \mathbf{X}=\mathbf{x}]
$$

- For continuous regressors, we can use the partial derivative:

$$
\frac{\partial \mu\left(x_{1}, \ldots, x_{k}\right)}{\partial x_{1}}
$$

- For binary X_{1}, we can use the difference in conditional expectations:

$$
\mu\left(1, x_{2}, \ldots, x_{k}\right)-\mu\left(0, x_{2}, \ldots, x_{k}\right)
$$

- "Partial effect" of X_{1} holding other included variables constant
- Exact form will depend on the functional form of $\mu(\mathbf{x})$.
- How do we decide what form $\mu(\mathbf{x})$ should take?

Estimating the CEF for discrete covariates

- To motivate function form, useful to think about estimation.
- How do we estimate $\mu(x)=\mathbb{E}[Y \mid X=x]$ for binary X ?
- Subclassification: calculate sample averages with levels of X_{i} :

$$
\hat{\mu}(1)=\frac{1}{n_{1}} \sum_{i=1}^{n} Y_{i} X_{i}
$$

- $n_{1}=\sum_{i=1}^{n} X_{i}$ is the number of units with $X_{i}=1$ in the sample.
- More generally for any discrete X_{i} :

$$
\hat{\mu}(x)=\frac{\sum_{i=1}^{N} Y_{i} 0\left(X_{i}=x\right)}{\sum_{i=1}^{N} \square\left(X_{i}=x\right)}
$$

Continuous covariates

- What if X is continuous? Subclassification fall apart.
- Each i has a unique value: $\sum_{i=1}^{N} \square\left(X_{i}=x\right)=1$
- Very noisy estimates
- What about any x not in the sample?
- Stratification: bin X_{i} into categories and treat like as discrete.
- Every x in the same bin gets the same conditional expectation.
- Depends on arbitrary bin cutoffs/sizes.
- Example:
- Personal data science: I wear an activity tracker and have a smart scale.
- Relationship between my weight and active minutes in the previous day.

Continuous covariate example

Continuous covariate CEF: interpolation

Continuous covariate CEF: stratification

Continuous covariate CEF: stratification

Linear CEFs

- Statification requires lots of choices/hidden assumptions.
- Number of categories, cutoffs for the categories, constant means within strata, etc.
- Alternative: assuming that the CEF is linear:

$$
\mu(x)=\mathbb{E}\left[Y_{i} \mid X_{i}=x\right]=\beta_{0}+\beta_{1} x
$$

- Intercept, β_{0} : the condition expectation of Y_{i} when $X_{i}=0$
- Slope, β_{1} : change in the CEF of Y_{i} given a one-unit change in X_{i}

Why is linearity an assumption?

- Example: Y_{i} is income, X_{i} is years of education.
- β_{0} : average income among people with 0 years of education.
- β_{1} : expected difference in income between two adults that differ by 1 year of education.
- Why is linearity an assumption?

$$
\begin{aligned}
\mathbb{E}\left[Y_{i} \mid X_{i}=12\right]-\mathbb{E}\left[Y_{i} \mid X_{i}=11\right] & =\mathbb{E}\left[Y_{i} \mid X_{i}=16\right]-\mathbb{E}\left[Y_{i} \mid X_{i}=15\right] \\
& =\beta_{1}
\end{aligned}
$$

- Effect of HS degree is the same as the effect of college degree.
- Put another way: average partial effects are constant $\frac{\partial \mu(x)}{\partial x}=\beta_{1}$

Linear CEF with nonlinear effects

- What if we think the effect is nonlinear?
- We can include nonlinear transformations:

$$
\mu(x)=\beta_{0}+x \beta_{1}+x^{2} \beta_{2}
$$

- Partial effect now varies: $\partial \mu(x) / \partial x=\beta_{1}+2 x \beta_{2}$
- Linear means linear in the parameters $\boldsymbol{\beta}=\left(\beta_{1}, \ldots, \beta_{k}\right)$, not \mathbf{X}.
- We can also include interactions between covariates:

$$
\mu\left(x_{1}, x_{2}\right)=\beta_{0}+x_{1} \beta_{1}+x_{2} \beta_{2}+x_{1} x_{2} \beta_{3}
$$

- Average partial effect of X_{1} depends on $X_{2}: \partial \mu\left(x_{1}, x_{2}\right) / \partial x_{1}=\beta_{1}+x_{2} \beta_{3}$

Linear CEF with a binary covariate

- Wait-times (Y_{i}) and race ($X_{i}=1$ for white, $X_{i}=0$ for POC)
- Two possible values of the CEF: μ_{1} for whites and μ_{0} for POC.
- Can write the CEF as follows:

$$
\mu(x)=x \mu_{1}+(1-x) \mu_{0}=\mu_{0}+x\left(\mu_{1}-\mu_{0}\right)=\beta_{0}+x \beta_{1}
$$

- No assumptions, just rewriting! Interpretations:
- $\beta_{0}=\mu_{0}$: expected wait-time for POC
- $\beta_{1}=\mu_{1}-\mu_{0}$: diff. in avg. wait times between whites and POC.
- >2 categories: dummies for all but category and everything is linear.

Linear CEF with multiple binary covariates

- What if we have two binary covariates, $X_{1}($ race $)$ and $X_{2}(1$ urban/0 rural):

$$
\mu\left(x_{1}, x_{2}\right)= \begin{cases}\mu_{00} & \text { if } x_{1}=0 \text { and } x_{2}=0(\text { POC, rural) } \\ \mu_{10} & \text { if } x_{1}=1 \text { and } x_{2}=0(\text { white, rural) } \\ \mu_{01} & \text { if } x_{1}=0 \text { and } x_{2}=1(\text { POC, urban }) \\ \mu_{11} & \text { if } x_{1}=1 \text { and } x_{2}=1 \text { (white, urban) }\end{cases}
$$

- Can rewrite this without assumptions as a linear CEF with interaction:

$$
\mu\left(x_{1}, x_{2}\right)=\beta_{0}+x_{1} \beta_{1}+x_{2} \beta_{2}+x_{1} x_{2} \beta_{3}
$$

- Interpretations:
- $\beta_{0}=\mu_{00}$: average wait times for rural POC.
- $\beta_{1}=\mu_{10}-\mu_{00}$: diff. in means for rural whites vs rural POC.
- $\beta_{2}=\mu_{01}-\mu_{00}$: diff. in means for urban POC vs rural POC.
- $\beta_{3}=\left(\mu_{11}-\mu_{01}\right)-\left(\mu_{10}-\mu_{00}\right)$: diff. in urban racial diff. vs rural racial diff.
- Generalizes to p binary variables if all interactions included (saturated)

Linear approximation

- Outside of saturated discrete settings, CEF almost never truly linear.
- Alternative goal: find best linear predictor of Y given X.
- Formally, linear function of X that minimizes squared prediction errors:

$$
\left(\beta_{0}, \beta_{1}\right)=\underset{\left(b_{0}, b_{1}\right)}{\arg \min } \mathbb{E}\left[\left(Y-\left(b_{0}+b_{1} X\right)\right)^{2}\right]
$$

- $m(x)=\beta_{0}+\beta_{1} X$ is called the linear projection of Y onto X.
- $\beta_{1}=\operatorname{Cov}(X, Y) / \mathbb{V}[X]$
- $\beta_{0}=\mu_{Y}-\mu_{X} \beta_{1}$, where $\mu_{Y}=\mathbb{E}[Y]$ and $\mu_{X}=\mathbb{E}[X]$
- In general, $m(x)$ distinct from the CEF:
- CEF, $\mu(x)$ is the best predictor of Y_{i} among all functions.
- Linear projection is best predictor among linear functions.

Linear approximation

Linear approximation

Linear approximation

Best linear predictor

- We'll almost always condition on a vector $\mathbf{X}=\left(X_{1}, \ldots, X_{k}\right)^{\prime}$:

$$
m(\mathbf{x})=m\left(x_{1}, \ldots, x_{k}\right)=x_{1} \beta_{1}+\cdots+x_{k} \beta_{k}=\mathbf{x}^{\prime} \boldsymbol{\beta}
$$

- Linear predictor when $\mathbf{X}=\mathbf{x}$
- \mathbf{X} is now a $k \times 1$ random vector of covariates:
- May contain nonlinear transformations/interactions of "real" variables.
- Typically, $X_{1}=1$ and is the intercept/constant.
- Assumptions ("Regularity conditions"):

1. $\mathbb{E}\left[Y^{2}\right]<\infty$ (outcome has finite mean/variance)
2. $\mathbb{E}\|\mathbf{X}\|^{2}<\infty$ (\mathbf{X} has finite means/variances/covariances)
3. $\mathbf{Q}_{\mathbf{X x}}=\mathbb{E}\left[\mathbf{X X}^{\prime}\right]$ is positive definite (columns of \mathbf{X} are linearly independent)

Linear Projection

- How to find $\boldsymbol{\beta}$? Minimize squared prediction error!

$$
\boldsymbol{\beta}=\underset{\mathbf{b} \in \mathbb{R}^{k}}{\arg \min } \mathbb{E}\left[\left(Y-\mathbf{X}^{\prime} \mathbf{b}\right)^{2}\right]
$$

- After some calculus:

$$
\boldsymbol{\beta}=\mathbf{Q}_{\mathbf{X} \mathbf{X}}^{-1} \mathbf{Q}_{\mathbf{X} Y}=\left(\mathbb{E}\left[\mathbf{X} \mathbf{X}^{\prime}\right]\right)^{-1} \mathbb{E}[\mathbf{X} Y]
$$

- $\mathbb{E}\left[\mathbf{X X}^{\prime}\right]$ is $k \times k$ and $\mathbb{E}[\mathbf{X} Y]$ is $k \times 1$
- Notes about the $m(\mathbf{x})=\mathbf{x}^{\prime} \boldsymbol{\beta}$:
- β is a population quantity and possible quantity of interest.
- Well-defined under very mild assumptions!
- Not necessarily a conditional mean nor a causal effect!

Projection errors

- Projection error: $e=Y-\mathbf{X}^{\prime} \boldsymbol{\beta}$
- Decomposition of Y into the linear projection and error: $Y=\mathbf{X}^{\prime} \boldsymbol{\beta}+e$
- Properties of the projection error:
- $\mathbb{E}[\mathbf{X e}]=0$
- $\mathbb{E}[e]=0$ when \mathbf{X} contains a constant.
- Together, implies $\operatorname{Cov}\left(X_{j}, e\right)=0$ for all $j=1, \ldots, k$
- Distinct from CEF errors: $u=Y-\mu(\mathbf{X})$ which had the additional property: $\mathbb{E}[u \mid \mathbf{X}]=0$
- Zero conditional mean is stronger: CEF errors are 0 at every value of \mathbf{X}
- $\mathbb{E}[\mathbf{X e} e]=0$ just says they are uncorrelated.

Regression coefficients

- Sometimes useful to separate the constant:

$$
Y=\beta_{0}+\mathbf{X}^{\prime} \boldsymbol{\beta}+e
$$

where \mathbf{X} doesn't have a constant.

- Solution for β more interpretable here:

$$
\boldsymbol{\beta}=\mathbb{V}[\mathbf{X}]^{-1} \operatorname{Cov}(\mathbf{X}, Y), \quad \beta_{0}=\mu_{Y}-\boldsymbol{\mu}_{\mathbf{X}}^{\prime} \boldsymbol{\beta}
$$

Interpretation of the coefficients

- Interpretation of β_{j} depends on what nonlinearities are included.
- Simplest case: no polynomials or interactions.
- β_{j} is the average change in predicted outcome for a one-unit change in X_{j} holding other variables fixed.
- Let's compare:

$$
\begin{aligned}
m\left(x_{1}+1, x_{2}\right) & =\beta_{0}+\beta_{1}\left(x_{1}+1\right)+\beta_{2} x_{2} \\
m\left(x_{1}, x_{2}\right) & =\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}
\end{aligned}
$$

- Then:

$$
m\left(x_{1}+1, x_{2}\right)-m\left(x_{1}, x_{2}\right)=\beta_{1}
$$

- Holds for all values of x_{2} and even if we add more variables.

Interpretation with nonlinear terms

- What if we include a nonlinear function of one covariate?

$$
m\left(x_{1}, x_{1}^{2}, x_{2}\right)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{1}^{2}+\beta_{3} x_{2},
$$

- One-unit change in x_{1} is more complicated:

$$
\begin{aligned}
m\left(x_{1}+1,\left(x_{1}+1\right)^{2}, x_{2}\right) & =\beta_{0}+\beta_{1}\left(x_{1}+1\right)+\beta_{2}\left(x_{1}+1\right)^{2}+\beta_{3} x_{2} \\
m\left(x_{1}, x_{1}^{2}, x_{2}\right) & =\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{1}^{2}+\beta_{3} x_{2},
\end{aligned}
$$

- Better to think of the marginal effect of $X_{i 1}$:

$$
\frac{\partial m\left(x_{1}, x_{1}^{2}, x_{2}\right)}{\partial x_{1}}=\beta_{1}+2 \beta_{2} x_{1}
$$

- Interpretations:
- β_{1} : "effect" of $X_{i 1}$ on predicted Y_{i} when $X_{i 1}=0$ (holding $X_{i 2}$ fixed)
- $\beta_{2} / 2$: how that "effect" changes as $X_{i 1}$ changes
- Maybe better to visualize than to interpret

Interpretation with interactions

-What if we include an interaction between two covariates?

$$
m\left(x_{1}, x_{2}, x_{1} x_{2}\right)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{1} x_{2}
$$

- Two different marginal effects of interest:

$$
\begin{aligned}
& \frac{\partial m\left(x_{1}, x_{2}, x_{1} x_{2}\right)}{\partial x_{1}}=\beta_{1}+\beta_{3} x_{2} \\
& \frac{\partial m\left(x_{1}, x_{2}, x_{1} x_{2}\right)}{\partial x_{2}}=\beta_{2}+\beta_{3} x_{1}
\end{aligned}
$$

- Interpretations:
- β_{1} : the marginal effect of $X_{i 1}$ on predicted Y_{i} when $X_{i 2}=0$.
- β_{2} : the marginal effect of $X_{i 2}$ on predicted Y_{i} when $X_{i 1}=0$.
- β_{3} : the change in the marginal effect of $X_{i 1}$ due to a one-unit change in $X_{i 2}$ OR the change in the marginal effect of $X_{i 2}$ due to a one-unit change in $X_{i 1}$.

Partitioned Regression

$$
(\alpha, \beta, \gamma)=\underset{(a, b, c) \in \mathbb{R}^{3}}{\arg \min } \mathbb{E}\left[\left(Y_{i}-\left(a+b X_{i}+c Z_{i}\right)\right)^{2}\right]
$$

- Can we get an expression for just β ? With some tricks, yes!
- Population residuals from projection of X_{i} on Z_{i} :

$$
\widetilde{X}_{i}=X_{i}-\left(\delta_{0}+\delta_{1} Z_{i}\right) \quad \text { where } \quad\left(\delta_{0}, \delta_{1}\right)=\underset{\left(d_{0}, d_{1}\right) \in \mathbb{R}^{2}}{\arg \min } \mathbb{E}\left[\left(X_{i}-\left(d_{0}+d_{1} Z_{i}\right)\right)^{2}\right]
$$

- \widetilde{X}_{i} is now orthogonal to Z_{i} so that $\operatorname{cov}\left(\widetilde{X}_{i}, Z_{i}\right)=\mathbb{E}\left[\widetilde{X}_{i} Z_{i}\right]=0$
- Project Y onto these residuals gives β as coefficient:

$$
\beta=\frac{\operatorname{cov}\left(Y_{i}, \widetilde{X}_{i}\right)}{\nabla\left[\widetilde{X}_{i}\right]}
$$

- Helps with interpretation: connects multivariate regression coefficients to simple regression coefficients.
- The relationship captured by β is between the outcome and the variation in X_{i} not linearly explained by Z_{i}

Partition regression more generally

- More general linear projection coefficients:

$$
\boldsymbol{\beta}=\left(\mathbb{E}\left[\mathbf{X} \mathbf{X}^{\prime}\right]\right)^{-1} \mathbb{E}[\mathbf{X} Y]
$$

- Let $\mathbf{X}_{i,-k}$ be the set of covariates without entry k.
- Now define $\widetilde{X}_{i k}=X_{i k}-m_{k}\left(\mathbf{X}_{i,-k}\right)$
- $m_{k}\left(\mathbf{X}_{i,-k}\right)$ is the BLP of $X_{i k}$ on $\mathbf{X}_{i,-k}$
- Generic coefficient β_{k} is:

$$
\beta_{k}=\frac{\operatorname{cov}\left(Y_{i}, \widetilde{X}_{i k}\right)}{V\left[\widetilde{X}_{i k}\right]}
$$

Omitted variable bias

- Consider two projections/regressions with and without some Z :

$$
m\left(\mathbf{X}_{i}, Z_{i}\right)=\mathbf{X}_{i}^{\prime} \boldsymbol{\beta}+Z_{i} \gamma, \quad m_{-z}\left(\mathbf{X}_{i}\right)=\mathbf{X}_{i}^{\prime} \boldsymbol{\delta},
$$

- How do β and δ relate? Use law of iterated projections:

$$
\begin{aligned}
\boldsymbol{\delta} & =\left(\mathbb{E}\left[\mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right]\right)^{-1} \mathbb{E}\left[\mathbf{X}_{i} Y_{i}\right] \\
& =\left(\mathbb{E}\left[\mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right]\right)^{-1} \mathbb{E}\left[\mathbf{X}_{i}\left(\mathbf{X}_{i}^{\prime} \boldsymbol{\beta}+Z_{i} \boldsymbol{\gamma}+e_{i}\right)\right] \\
& =\left(\mathbb{E}\left[\mathbf{X}_{i} \mathbf{X}_{\mathbf{\prime}}^{\prime}\right]\right)^{-1}\left(\mathbb{E}\left[\mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right] \boldsymbol{\beta}+\mathbb{E}\left[\mathbf{X}_{i} Z_{i}\right] \gamma+\mathbb{E}\left[\mathbf{X}_{i} e_{i}\right]\right) \\
& =\boldsymbol{\beta}+\underbrace{\left(\mathbb{E}\left[\mathbf{X}_{i}^{\prime} \mathbf{X}_{i}^{\prime}\right]-1\right.}_{\text {coefs from } \bar{\prime} \sim \mathbf{X}})^{-1}\left[\mathbf{X}_{i} Z_{i}\right] \\
&
\end{aligned}
$$

- Leads to the "omitted variable bias" formula:

$$
\boldsymbol{\delta}=\boldsymbol{\beta}+\boldsymbol{\pi} \boldsymbol{\gamma}, \quad \boldsymbol{\pi}=\left(\mathbb{E}\left[\mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right]\right)^{-1} \mathbb{E}\left[\mathbf{X}_{i} Z_{i}\right]
$$

- $\delta-\boldsymbol{\beta}=\boldsymbol{\pi} \boldsymbol{\gamma}$ is the "bias" but this is misleading.
- β not necessarily "correct", we're just relating two projections

Best linear approximation

- What is the relationship between $m(\mathbf{X})$ and $\mu(\mathbf{X})=\mathbb{E}[\boldsymbol{Y} \mid \mathbf{X}]$?
- If $\mu(\mathbf{X})$ is linear, then $\mu(\mathbf{X})=m(\mathbf{X})=\mathbf{X}^{\prime} \boldsymbol{\beta}$.
- But $\mu(\mathbf{X})$ could be nonlinear, what then?
- Linear projection justification: best linear approximation to $\mu(\mathbf{X})$:

$$
\boldsymbol{\beta}=\underset{\mathbf{b} \in \mathbb{R}^{\kappa}}{\arg \min } \mathbb{E}\left[\left(\mu(\mathbf{X})-\mathbf{X}^{\prime} \boldsymbol{\beta}\right)^{2}\right]
$$

- Linear projection is best linear approximation to Y and $\mathbb{E}[Y \mid X]$.
- Limitations:
- If nonlinearity of $\mu(\mathbf{X})$ is severe, $m(\mathbf{X})$ can only be so good.
- $m(\mathbf{X})$ can be sensitive to the marginal distribution of \mathbf{X}.

$$
Y=\mathbf{X}^{\prime} \boldsymbol{\beta}+e
$$

- "The Linear Model": is this an assumption?
- Depends on what we assume about the error, e
- If $\mathbb{E}[e \mid \mathbf{X}]=0$, then we are assuming the CEF is linear, $\mathbb{E}[Y \mid X]=\mathbf{X}^{\prime} \boldsymbol{\beta}$
- If just $\mathbb{E}[\mathbf{X e}]=0$, then this is just a linear projection.
- First is very strong, second is very mild.
- Why do we care? Affects the properties of OLS.
- Some finite-sample properties of OLS (unbiasedness) require linear CEF
- Asymptotic results (consistency, asymptotic normality) apply to both.
- OLS will consitently estimate something, but maybe not what you want.

