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Where are we? Where are we going?

• Learned about estimation and inference in general.

• Now: building to a specific estimator, least squares regression.

• First we need to understand what a “linear model” is and when/why we
need it.

• No estimators quite yet. First, let’s understand what we are estimating.

• Linear model is ubiquitous but poorly understood. Lots of subtlety
here.
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Regression derivatives and partial effects
• Goal of regression: how mean of 𝘠 changes with 𝘟 .

𝜇(𝘅) = 𝔼[𝘠 ∣ 𝗫 = 𝘅]

• For continuous regressors, we can use the partial derivative:

𝜕𝜇(𝘹𝟣, … , 𝘹𝘬)
𝜕𝘹𝟣

• For binary 𝘟𝟣, we can use the difference in conditional expectations:

𝜇(𝟣, 𝘹𝟤, … , 𝘹𝘬) − 𝜇(𝟢, 𝘹𝟤, … , 𝘹𝘬)

• “Partial effect” of 𝘟𝟣 holding other included variables constant

• Exact form will depend on the functional form of 𝜇(𝘅).

• How do we decide what form 𝜇(𝘅) should take?
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Estimating the CEF for discrete covariates

• To motivate function form, useful to think about estimation.

• How do we estimate 𝜇(𝘹) = 𝔼[𝘠 |𝘟 = 𝘹] for binary 𝘟?

• Subclassification: calculate sample averages with levels of 𝘟𝘪 :

̂𝜇(𝟣) = 𝟣
𝘯𝟣

𝘯
∑
𝘪=𝟣

𝘠𝘪𝘟𝘪

• 𝘯𝟣 = ∑𝘯
𝘪=𝟣 𝘟𝘪 is the number of units with 𝘟𝘪 = 𝟣 in the sample.

• More generally for any discrete 𝘟𝘪 :

̂𝜇(𝘹) = ∑𝘕
𝘪=𝟣 𝘠𝘪 𝕀(𝘟𝘪 = 𝘹)

∑𝘕
𝘪=𝟣 𝕀(𝘟𝘪 = 𝘹)
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Continuous covariates

• What if 𝘟 is continuous? Subclassification fall apart.

• Each 𝘪 has a unique value: ∑𝘕
𝘪=𝟣 𝕀(𝘟𝘪 = 𝘹) = 𝟣

• Very noisy estimates
• What about any 𝘹 not in the sample?

• Stratification: bin 𝘟𝘪 into categories and treat like as discrete.

• Every 𝘹 in the same bin gets the same conditional expectation.
• Depends on arbitrary bin cutoffs/sizes.

• Example:

• Personal data science: I wear an activity tracker and have a smart scale.
• Relationship between my weight and active minutes in the previous day.
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Continuous covariate example
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Continuous covariate CEF: interpolation
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Continuous covariate CEF: stratification
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Linear CEFs

• Statification requires lots of choices/hidden assumptions.

• Number of categories, cutoffs for the categories, constant means within
strata, etc.

• Alternative: assuming that the CEF is linear:

𝜇(𝘹) = 𝔼[𝘠𝘪 |𝘟𝘪 = 𝘹] = 𝛽𝟢 + 𝛽𝟣𝘹

• Intercept, 𝛽𝟢: the condition expectation of 𝘠𝘪 when 𝘟𝘪 = 𝟢

• Slope, 𝛽𝟣: change in the CEF of 𝘠𝘪 given a one-unit change in 𝘟𝘪
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Why is linearity an assumption?

• Example: 𝘠𝘪 is income, 𝘟𝘪 is years of education.

• 𝛽𝟢: average income among people with 0 years of education.
• 𝛽𝟣: expected difference in income between two adults that differ by 1
year of education.

• Why is linearity an assumption?

𝔼[𝘠𝘪 |𝘟𝘪 = 𝟣𝟤] − 𝔼[𝘠𝘪 |𝘟𝘪 = 𝟣𝟣] = 𝔼[𝘠𝘪 |𝘟𝘪 = 𝟣𝟨] − 𝔼[𝘠𝘪 |𝘟𝘪 = 𝟣𝟧]
= 𝛽𝟣

• Effect of HS degree is the same as the effect of college degree.

• Put another way: average partial effects are constant 𝜕𝜇(𝘹)
𝜕𝘹 = 𝛽𝟣
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Linear CEF with nonlinear effects

• What if we think the effect is nonlinear?

• We can include nonlinear transformations:

𝜇(𝘹) = 𝛽𝟢 + 𝘹𝛽𝟣 + 𝘹𝟤𝛽𝟤

• Partial effect now varies: 𝜕𝜇(𝘹)/𝜕𝘹 = 𝛽𝟣 + 𝟤𝘹𝛽𝟤

• Linear means linear in the parameters 𝜷 = (𝛽𝟣, … , 𝛽𝘬), not 𝗫.

• We can also include interactions between covariates:

𝜇(𝘹𝟣, 𝘹𝟤) = 𝛽𝟢 + 𝘹𝟣𝛽𝟣 + 𝘹𝟤𝛽𝟤 + 𝘹𝟣𝘹𝟤𝛽𝟥

• Average partial effect of 𝘟𝟣 depends on 𝘟𝟤: 𝜕𝜇(𝘹𝟣, 𝘹𝟤)/𝜕𝘹𝟣 = 𝛽𝟣 + 𝘹𝟤𝛽𝟥
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Linear CEF with a binary covariate

• Wait-times (𝘠𝘪 ) and race (𝘟𝘪 = 𝟣 for white, 𝘟𝘪 = 𝟢 for POC)

• Two possible values of the CEF: 𝜇𝟣 for whites and 𝜇𝟢 for POC.

• Can write the CEF as follows:

𝜇(𝘹) = 𝘹𝜇𝟣 + (𝟣 − 𝘹)𝜇𝟢 = 𝜇𝟢 + 𝘹 (𝜇𝟣 − 𝜇𝟢) = 𝛽𝟢 + 𝘹𝛽𝟣

• No assumptions, just rewriting! Interpretations:

• 𝛽𝟢 = 𝜇𝟢: expected wait-time for POC
• 𝛽𝟣 = 𝜇𝟣 − 𝜇𝟢: diff. in avg. wait times between whites and POC.

• > 𝟤 categories: dummies for all but category and everything is linear.
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Linear CEF with multiple binary covariates
• What if we have two binary covariates, 𝘟𝟣 (race) and 𝘟𝟤 (1 urban/0
rural):

𝜇(𝘹𝟣, 𝘹𝟤) =

⎧{{{
⎨{{{⎩

𝜇𝟢𝟢 if 𝘹𝟣 = 𝟢 and 𝘹𝟤 = 𝟢 (POC, rural)
𝜇𝟣𝟢 if 𝘹𝟣 = 𝟣 and 𝘹𝟤 = 𝟢 (white, rural)
𝜇𝟢𝟣 if 𝘹𝟣 = 𝟢 and 𝘹𝟤 = 𝟣 (POC, urban)
𝜇𝟣𝟣 if 𝘹𝟣 = 𝟣 and 𝘹𝟤 = 𝟣 (white, urban)

• Can rewrite this without assumptions as a linear CEF with interaction:

𝜇(𝘹𝟣, 𝘹𝟤) = 𝛽𝟢 + 𝘹𝟣𝛽𝟣 + 𝘹𝟤𝛽𝟤 + 𝘹𝟣𝘹𝟤𝛽𝟥

• Interpretations:

• 𝛽𝟢 = 𝜇𝟢𝟢: average wait times for rural POC.
• 𝛽𝟣 = 𝜇𝟣𝟢 − 𝜇𝟢𝟢: diff. in means for rural whites vs rural POC.
• 𝛽𝟤 = 𝜇𝟢𝟣 − 𝜇𝟢𝟢: diff. in means for urban POC vs rural POC.
• 𝛽𝟥 = (𝜇𝟣𝟣 − 𝜇𝟢𝟣) − (𝜇𝟣𝟢 − 𝜇𝟢𝟢): diff. in urban racial diff. vs rural racial diff.

• Generalizes to 𝘱 binary variables if all interactions included (saturated)
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Linear approximation

• Outside of saturated discrete settings, CEF almost never truly linear.

• Alternative goal: find best linear predictor of 𝘠 given 𝘟 .

• Formally, linear function of 𝘟 that minimizes squared prediction errors:

(𝛽𝟢, 𝛽𝟣) = argmin
(𝘣𝟢,𝘣𝟣)

𝔼[(𝘠 − (𝘣𝟢 + 𝘣𝟣𝘟))𝟤]

• 𝘮(𝘹) = 𝛽𝟢 + 𝛽𝟣𝘟 is called the linear projection of 𝘠 onto 𝘟 .

• 𝛽𝟣 = Cov(𝘟, 𝘠 )/𝕍[𝘟]
• 𝛽𝟢 = 𝜇𝘠 − 𝜇𝘟 𝛽𝟣, where 𝜇𝘠 = 𝔼[𝘠 ] and 𝜇𝘟 = 𝔼[𝘟]

• In general, 𝘮(𝘹) distinct from the CEF:

• CEF, 𝜇(𝘹) is the best predictor of 𝘠𝘪 among all functions.
• Linear projection is best predictor among linear functions.
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Best linear predictor

• We’ll almost always condition on a vector 𝗫 = (𝘟𝟣, … , 𝘟𝘬)′:

𝘮(𝘅) = 𝘮(𝘹𝟣, … , 𝘹𝘬) = 𝘹𝟣𝛽𝟣 + ⋯ + 𝘹𝘬𝛽𝘬 = 𝘅′𝜷

• Linear predictor when 𝗫 = 𝘅

• 𝗫 is now a 𝘬 × 𝟣 random vector of covariates:

• May contain nonlinear transformations/interactions of “real” variables.
• Typically, 𝘟𝟣 = 𝟣 and is the intercept/constant.

• Assumptions (“Regularity conditions”):

1. 𝔼[𝘠 𝟤] < ∞ (outcome has finite mean/variance)
2. 𝔼‖𝗫‖𝟤 < ∞ (𝗫 has finite means/variances/covariances)
3. 𝗤𝗫𝗫 = 𝔼[𝗫𝗫′] is positive definite (columns of 𝗫 are linearly

independent)
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Linear Projection

• How to find 𝜷? Minimize squared prediction error!

𝜷 = argmin
𝗯∈ℝ𝘬

𝔼 [(𝘠 − 𝗫′𝗯)𝟤]

• After some calculus:

𝜷 = 𝗤−𝟣
𝗫𝗫𝗤𝗫𝘠 = (𝔼[𝗫𝗫′])−𝟣 𝔼[𝗫𝘠 ]

• 𝔼[𝗫𝗫′] is 𝘬 × 𝘬 and 𝔼[𝗫𝘠 ] is 𝘬 × 𝟣

• Notes about the 𝘮(𝘅) = 𝘅′𝜷:

• 𝜷 is a population quantity and possible quantity of interest.
• Well-defined under very mild assumptions!
• Not necessarily a conditional mean nor a causal effect!
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Projection errors

• Projection error: 𝘦 = 𝘠 − 𝗫′𝜷

• Decomposition of 𝘠 into the linear projection and error: 𝘠 = 𝗫′𝜷 + 𝘦

• Properties of the projection error:

• 𝔼[𝗫𝘦] = 𝟢
• 𝔼[𝘦] = 𝟢 when 𝗫 contains a constant.
• Together, implies Cov(𝘟𝘫 , 𝘦) = 𝟢 for all 𝘫 = 𝟣, … , 𝘬

• Distinct from CEF errors: 𝘶 = 𝘠 − 𝜇(𝗫) which had the additional
property: 𝔼[𝘶 ∣ 𝗫] = 𝟢

• Zero conditional mean is stronger: CEF errors are 0 at every value of 𝗫
• 𝔼[𝗫𝘦] = 𝟢 just says they are uncorrelated.
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• Decomposition of 𝘠 into the linear projection and error: 𝘠 = 𝗫′𝜷 + 𝘦

• Properties of the projection error:

• 𝔼[𝗫𝘦] = 𝟢
• 𝔼[𝘦] = 𝟢 when 𝗫 contains a constant.
• Together, implies Cov(𝘟𝘫 , 𝘦) = 𝟢 for all 𝘫 = 𝟣, … , 𝘬

• Distinct from CEF errors: 𝘶 = 𝘠 − 𝜇(𝗫) which had the additional
property: 𝔼[𝘶 ∣ 𝗫] = 𝟢
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Regression coefficients

• Sometimes useful to separate the constant:

𝘠 = 𝛽𝟢 + 𝗫′𝜷 + 𝘦

where 𝗫 doesn’t have a constant.

• Solution for 𝜷 more interpretable here:

𝜷 = 𝕍[𝗫]−𝟣Cov(𝗫, 𝘠 ), 𝛽𝟢 = 𝜇𝘠 − 𝝁′
𝗫𝜷
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Interpretation of the coefficients

• Interpretation of 𝛽𝘫 depends on what nonlinearities are included.

• Simplest case: no polynomials or interactions.

• 𝛽𝘫 is the average change in predicted outcome for a one-unit change in
𝘟𝘫 holding other variables fixed.

• Let’s compare:

𝘮(𝘹𝟣 + 𝟣, 𝘹𝟤) = 𝛽𝟢 + 𝛽𝟣(𝘹𝟣 + 𝟣) + 𝛽𝟤𝘹𝟤

𝘮(𝘹𝟣, 𝘹𝟤) = 𝛽𝟢 + 𝛽𝟣𝘹𝟣 + 𝛽𝟤𝘹𝟤,

• Then:
𝘮(𝘹𝟣 + 𝟣, 𝘹𝟤) − 𝘮(𝘹𝟣, 𝘹𝟤) = 𝛽𝟣

• Holds for all values of 𝘹𝟤 and even if we add more variables.
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Interpretation with nonlinear terms
• What if we include a nonlinear function of one covariate?

𝘮(𝘹𝟣, 𝘹𝟤
𝟣 , 𝘹𝟤) = 𝛽𝟢 + 𝛽𝟣𝘹𝟣 + 𝛽𝟤𝘹𝟤

𝟣 + 𝛽𝟥𝘹𝟤,

• One-unit change in 𝘹𝟣 is more complicated:

𝘮(𝘹𝟣 + 𝟣, (𝘹𝟣 + 𝟣)𝟤, 𝘹𝟤) = 𝛽𝟢 + 𝛽𝟣(𝘹𝟣 + 𝟣) + 𝛽𝟤(𝘹𝟣 + 𝟣)𝟤 + 𝛽𝟥𝘹𝟤

𝘮(𝘹𝟣, 𝘹𝟤
𝟣 , 𝘹𝟤) = 𝛽𝟢 + 𝛽𝟣𝘹𝟣 + 𝛽𝟤𝘹𝟤

𝟣 + 𝛽𝟥𝘹𝟤,

• Better to think of the marginal effect of 𝘟𝘪𝟣:

𝜕𝘮(𝘹𝟣, 𝘹𝟤
𝟣 , 𝘹𝟤)

𝜕𝘹𝟣
= 𝛽𝟣 + 𝟤𝛽𝟤𝘹𝟣

• Interpretations:

• 𝛽𝟣: “effect” of 𝘟𝘪𝟣 on predicted 𝘠𝘪 when 𝘟𝘪𝟣 = 𝟢 (holding 𝘟𝘪𝟤 fixed)
• 𝛽𝟤/𝟤: how that “effect” changes as 𝘟𝘪𝟣 changes
• Maybe better to visualize than to interpret
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Interpretation with interactions
• What if we include an interaction between two covariates?

𝘮(𝘹𝟣, 𝘹𝟤, 𝘹𝟣𝘹𝟤) = 𝛽𝟢 + 𝛽𝟣𝘹𝟣 + 𝛽𝟤𝘹𝟤 + 𝛽𝟥𝘹𝟣𝘹𝟤

• Two different marginal effects of interest:

𝜕𝘮(𝘹𝟣, 𝘹𝟤, 𝘹𝟣𝘹𝟤)
𝜕𝘹𝟣

= 𝛽𝟣 + 𝛽𝟥𝘹𝟤,

𝜕𝘮(𝘹𝟣, 𝘹𝟤, 𝘹𝟣𝘹𝟤)
𝜕𝘹𝟤

= 𝛽𝟤 + 𝛽𝟥𝘹𝟣

• Interpretations:

• 𝛽𝟣: the marginal effect of 𝘟𝘪𝟣 on predicted 𝘠𝘪 when 𝘟𝘪𝟤 = 𝟢.
• 𝛽𝟤: the marginal effect of 𝘟𝘪𝟤 on predicted 𝘠𝘪 when 𝘟𝘪𝟣 = 𝟢.
• 𝛽𝟥: the change in the marginal effect of 𝘟𝘪𝟣 due to a one-unit change in

𝘟𝘪𝟤 OR the change in the marginal effect of 𝘟𝘪𝟤 due to a one-unit change
in 𝘟𝘪𝟣.
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Partitioned Regression

(𝛼, 𝛽, 𝛾) = argmin
(𝘢,𝘣,𝘤)∈ℝ𝟥

𝔼[(𝘠𝘪 − (𝘢 + 𝘣𝘟𝘪 + 𝘤𝘡𝘪 ))𝟤]

• Can we get an expression for just 𝛽? With some tricks, yes!

• Population residuals from projection of 𝘟𝘪 on 𝘡𝘪 :

𝘟𝘪 = 𝘟𝘪 − (𝛿𝟢 + 𝛿𝟣𝘡𝘪 ) where (𝛿𝟢, 𝛿𝟣) = argmin
(𝘥𝟢,𝘥𝟣)∈ℝ𝟤

𝔼[(𝘟𝘪 − (𝘥𝟢 + 𝘥𝟣𝘡𝘪 ))𝟤]

• 𝘟𝘪 is now orthogonal to 𝘡𝘪 so that cov(𝘟𝘪 , 𝘡𝘪 ) = 𝔼[𝘟𝘪 𝘡𝘪 ] = 𝟢

• Project 𝘠 onto these residuals gives 𝛽 as coefficient:

𝛽 = cov(𝘠𝘪 , 𝘟𝘪 )
𝕍[𝘟𝘪 ]

• Helps with interpretation: connects multivariate regression coefficients
to simple regression coefficients.

• The relationship captured by 𝛽 is between the outcome and the
variation in 𝘟𝘪 not linearly explained by 𝘡𝘪
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Partition regression more generally

• More general linear projection coefficients:

𝜷 = (𝔼[𝗫𝗫′])−𝟣 𝔼[𝗫𝘠 ]

• Let 𝗫𝘪 ,−𝘬 be the set of covariates without entry 𝘬 .

• Now define 𝘟𝘪𝘬 = 𝘟𝘪𝘬 − 𝘮𝘬(𝗫𝘪 ,−𝘬)

• 𝘮𝘬(𝗫𝘪 ,−𝘬) is the BLP of 𝘟𝘪𝘬 on 𝗫𝘪 ,−𝘬

• Generic coefficient 𝛽𝘬 is:

𝛽𝘬 = cov(𝘠𝘪 , 𝘟𝘪𝘬)
𝕍[𝘟𝘪𝘬 ]
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Omitted variable bias
• Consider two projections/regressions with and without some 𝘡 :

𝘮(𝗫𝘪 , 𝘡𝘪 ) = 𝗫′
𝘪 𝜷 + 𝘡𝘪𝛾, 𝘮−𝘻(𝗫𝘪 ) = 𝗫′

𝘪 𝜹,

• How do 𝜷 and 𝜹 relate? Use law of iterated projections:
𝜹 = (𝔼[𝗫𝘪𝗫′

𝘪 ])
−𝟣 𝔼[𝗫𝘪𝘠𝘪 ]

= (𝔼[𝗫𝘪𝗫′
𝘪 ])

−𝟣 𝔼[𝗫𝘪 (𝗫′
𝘪 𝜷 + 𝘡𝘪𝛾 + 𝘦𝘪 )]

= (𝔼[𝗫𝘪𝗫′
𝘪 ])

−𝟣 (𝔼[𝗫𝘪𝗫′
𝘪 ]𝜷 + 𝔼[𝗫𝘪𝘡𝘪 ]𝛾 + 𝔼[𝗫𝘪𝘦𝘪 ])

= 𝜷 + (𝔼[𝗫𝘪𝗫′
𝘪 ])

−𝟣 𝔼[𝗫𝘪𝘡𝘪 ]⏟⏟⏟⏟⏟⏟⏟⏟⏟
coefs from𝘡∼𝗫

𝛾

• Leads to the “omitted variable bias” formula:

𝜹 = 𝜷 + 𝝅𝛾, 𝝅 = (𝔼[𝗫𝘪𝗫′
𝘪 ])

−𝟣 𝔼[𝗫𝘪𝘡𝘪 ]

• 𝜹 − 𝜷 = 𝝅𝛾 is the “bias” but this is misleading.

• 𝜷 not necessarily “correct”, we’re just relating two projections
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Best linear approximation

• What is the relationship between 𝘮(𝗫) and 𝜇(𝗫) = 𝔼[𝘠 ∣ 𝗫]?

• If 𝜇(𝗫) is linear, then 𝜇(𝗫) = 𝘮(𝗫) = 𝗫′𝜷.
• But 𝜇(𝗫) could be nonlinear, what then?

• Linear projection justification: best linear approximation to 𝜇(𝗫):

𝜷 = argmin
𝗯∈ℝ𝘒

𝔼 [(𝜇(𝗫) − 𝗫′𝜷)𝟤]

• Linear projection is best linear approximation to 𝘠 and 𝔼[𝘠 ∣ 𝘟].

• Limitations:

• If nonlinearity of 𝜇(𝗫) is severe, 𝘮(𝗫) can only be so good.
• 𝘮(𝗫) can be sensitive to the marginal distribution of 𝗫.
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Recap

𝘠 = 𝗫′𝜷 + 𝘦

• “The Linear Model”: is this an assumption?

• Depends on what we assume about the error, 𝘦

• If 𝔼[𝘦 ∣ 𝗫] = 𝟢, then we are assuming the CEF is linear, 𝔼[𝘠 ∣ 𝘟] = 𝗫′𝜷
• If just 𝔼[𝗫𝘦] = 𝟢, then this is just a linear projection.
• First is very strong, second is very mild.

• Why do we care? Affects the properties of OLS.

• Some finite-sample properties of OLS (unbiasedness) require linear CEF
• Asymptotic results (consistency, asymptotic normality) apply to both.
• OLS will consitently estimate something, but maybe not what you want.
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