9. Asymptotics

Fall 2023

Matthew Blackwell

Gov 2002 (Harvard)

Where are we? Where are we going?

- Last time: introducing estimators, looking at finite-sample properties.
- Now: can we say more as sample size grows?

Political canvassing study

Durably reducing transphobia: A field experiment on door-to-door canvassing

David Broockman ${ }^{\text {1N }}$ and Joshua Kalla ${ }^{2}$
Existing research depicts intergroup prejudices as deeply ingrained, requiring intense intervention to lastingly reduce. Here, we show that a single approximately 10 -minute onversation encouraging actively taking the perspective of others can markedly canvassing intervention in South Florida targeting antitransgender prejudice. Despite declines in homophobia, transphobia remains pervasive. For the intervention, 56 canvassers went door to door encouraging active perspective-taking with 501 voters at voters' doorsteps. A randomized trial found that these conversations substantially reduced transphobia, with decreases greater than Americans' average decrease in homophobia from 1998 to 2012. These effects persisted for 3 months, and both transgender and nontransgender canvassers were effective. The intervention also increased support for a nondiscrimination law, even after exposing voters to counterarguments.

- Can canvassers change minds about topics like transgender rights?
- Experimental setting:
- Randomly assign canvassers to have a conversation about transgender right or a conversation about recycling.
- Trans rights conversations focused on "perspective taking"
- Outcome of interest: support for trans rights policies.

Translating into math

- Outcome: $Y_{i} \in\{1$ (least supportive), $2,3,4,5$ (most supportive) $\}$
- Treatment: $D_{i} \in\{0$ (recycling script), 1 (trans rights script) $\}$
- Goal is to learn something about the joint distribution of $\left(Y_{i}, D_{i}\right)$.
- Typical estimand would be the difference in conditional expectations:

$$
\tau=\mathbb{E}\left[Y_{i} \mid D_{i}=1\right]-\mathbb{E}\left[Y_{i} \mid D_{i}=0\right]
$$

- Typical plug in estimator would be the difference in sample means:

$$
\widehat{\tau}_{n}=\frac{\sum_{i=1}^{n} Y_{i} D_{i}}{\sum_{i=1}^{n} D_{i}}-\frac{\sum_{i=1}^{n} Y_{i}\left(1-D_{i}\right)}{\sum_{i=1}^{n}\left(1-D_{i}\right)}
$$

- Today: what happens to the distribution of $\widehat{\tau}_{n}$ as n grows?

1/ Asymptotics

Current knowledge

- For i.i.d. r.v.s, X_{1}, \ldots, X_{n}, with $\mathbb{E}\left[X_{i}\right]=\mu$ and $\mathbb{V}\left[X_{i}\right]=\sigma^{2}$ we know that:
- \bar{X}_{n} is unbiased, $\mathbb{E}\left[\bar{X}_{n}\right]=\mathbb{E}\left[X_{i}\right]=\mu$
- Sampling variance is $\mathbb{V}\left[\bar{X}_{n}\right]=\frac{\sigma^{2}}{n}$ where $\sigma^{2}=\mathbb{V}\left[X_{i}\right]$
- None of these rely on a specific distribution for X_{i} !
- Assuming $X_{i} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, we know the exact distribution of \bar{X}_{n}.
- What if the data isn't normal? What is the sampling distribution of \bar{X}_{n} ?
- Asymptotics: approximate the sampling distribution of \bar{X}_{n} as n gets big.

Sequence of sample means

- What can we say about the sample mean n gets large?
- Need to think about sequences of sample means with increasing n :

$$
\begin{aligned}
& \bar{X}_{1}=X_{1} \\
& \bar{X}_{2}=(1 / 2) \cdot\left(X_{1}+X_{2}\right) \\
& \bar{X}_{3}=(1 / 3) \cdot\left(X_{1}+X_{2}+X_{3}\right) \\
& \bar{X}_{4}=(1 / 4) \cdot\left(X_{1}+X_{2}+X_{3}+X_{4}\right) \\
& \bar{X}_{5}=(1 / 5) \cdot\left(X_{1}+X_{2}+X_{3}+X_{4}+X_{5}\right) \\
& \quad \vdots \\
& \bar{X}_{n}=(1 / n) \cdot\left(X_{1}+X_{2}+X_{3}+X_{4}+X_{5}+\cdots+X_{n}\right)
\end{aligned}
$$

- Note: this is a sequence of random variables!

Asymptotics and Limits

- Asymptotic analysis is about making approximations to finite sample properties.
- Useful to know some properties of deterministic sequences:

Definition

A sequence $\left\{a_{n}: n=1,2, \ldots\right\}$ has the limit a written $a_{n} \rightarrow a$ as $n \rightarrow \infty$ if for all $\delta>0$ there is some $n_{\delta}<\infty$ such that for all $n \geq n_{\delta},\left|a_{n}-a\right| \leq \delta$.

- a_{n} gets closer and closer to a as n gets larger (a_{n} converges to $\left.a\right)$
- $\left\{a_{n}: n=1,2, \ldots\right\}$ is bounded if there is $b<\infty$ such that $\left|a_{n}\right|<b$ for all n.

Limit example: (n-1)/n

Definition

A sequence $\left\{a_{n}: n=1,2, \ldots\right\}$ has the limit a written $a_{n} \rightarrow a$ as $n \rightarrow \infty$ if for all $\delta>0$ there is some $n_{\delta}<\infty$ such that for all $n \geq n_{\delta},\left|a_{n}-a\right| \leq \delta$.

Convergence in Probability

Definition

A sequence of random variables, $\left\{Z_{n}: n=1,2, \ldots\right\}$, is said to converge in probability to a value b if for every $\varepsilon>0$,

$$
\mathbb{P}\left(\left|Z_{n}-b\right|>\varepsilon\right) \rightarrow 0,
$$

as $n \rightarrow \infty$. We write this $Z_{n} \xrightarrow{p} b$.

- Basically: probability that Z_{n} lies outside any (teeny, tiny) interval around b approaches 0 as $n \rightarrow \infty$
- Economists writes $\operatorname{plim}\left(Z_{n}\right)=b$ if $Z_{n} \xrightarrow{p} b$.
- An estimator is consistent if $\hat{\theta}_{n} \xrightarrow{p} \theta$.
- Distribution of $\hat{\theta}_{n}$ collapses on θ as $n \rightarrow \infty$.
- Inconsistent estimator are bad bad bad: more data gives worse answers!

Convergence in probability visually

Law of large numbers

Weak Law of Large Numbers

Let X_{1}, \ldots, X_{n} be a an i.i.d. draws from a distribution with mean $\mathbb{E}\left[\left|X_{i}\right|\right]<\infty$.
Let $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$. Then, $\bar{X}_{n} \xrightarrow{p} \mathbb{E}\left[X_{i}\right]$.

- Note: we don't assume finite variance, only finite expectation.
- Intuition: The probability of \bar{X}_{n} being "far away" from μ goes to 0 as n gets big.
- Implies general consistency of plug-in estimators
- If $\mathbb{E}\left[\left|g\left(X_{i}\right)\right|\right]<\infty$, then $\frac{1}{n} \sum_{i=1}^{n} g\left(X_{i}\right) \xrightarrow{p} \mathbb{E}\left[g\left(X_{i}\right)\right]$

LLN by simulation in R

- Draw different sample sizes from Exponential distribution with rate 0.5
- $\rightsquigarrow \mathbb{E}\left[X_{i}\right]=2$

```
nsims <- 10000
holder <- matrix(NA, nrow = nsims, ncol = 6)
for (i in 1:nsims) {
    s5 <- rexp(n = 5, rate = 0.5)
    s15<- rexp(n = 15, rate = 0.5)
    s30<- rexp(n = 30, rate = 0.5)
    s100<- rexp(n = 100, rate = 0.5)
    s1000<- rexp(n = 1000, rate = 0.5)
    s10000<- rexp(n = 10000, rate = 0.5)
    holder[i,1] <- mean(s5)
    holder[i,2] <- mean(s15)
    holder[i,3] <- mean(s30)
    holder[i,4] <- mean(s100)
    holder[i,5] <- mean(s1000)
    holder[i,6] <- mean(s10000)
}
```


LLN in action

- Distribution of \bar{X}_{15}

LLN in action

- Distribution of \bar{X}_{30}

LLN in action

- Distribution of \bar{X}_{100}

LLN in action

- Distribution of \bar{X}_{1000}

Chebyshev Inequality

- How can we show convergence in probability? Can verify if we know specific distribution of $\hat{\theta}$.
- But can we say anything for arbitrary distributions?

Chebyshev Inequality
Suppose that X is r.v. for which $\mathbb{V}[X]<\infty$. Then, for every real number $\delta>0$,

$$
\mathbb{P}(|X-\mathbb{E}[X]| \geq \delta) \leq \frac{\mathbb{V}[X]}{\delta^{2}}
$$

- Variance places limits on how far an observation can be from its mean.

Proof of Chebyshev

- Let $Z=X-\mathbb{E}[X]$ with density $f_{Z}(x)$. Probability is just integral over the region:

$$
\mathbb{P}(|Z| \geq \delta)=\int_{|x| \geq \delta} f_{Z}(x) d x
$$

- Note that where $|x| \geq \delta$, we have $1 \leq x^{2} / \delta^{2}$, so

$$
\mathbb{P}(|Z| \geq \delta) \leq \int_{|x| \geq \delta} \frac{x^{2}}{\delta^{2}} f_{Z}(x) d x \leq \int_{-\infty}^{\infty} \frac{x^{2}}{\delta^{2}} f_{Z}(x) d x=\frac{\mathbb{E}\left[Z^{2}\right]}{\delta^{2}}=\frac{\mathbb{V}[X]}{\delta^{2}}
$$

- Under finite variance, applying this to $\left|\bar{X}_{n}-\mu\right|$ proves the LLN.

Properties of convergence in probability

1. Continuous mapping theorem: if $X_{n} \xrightarrow{p} c$, then $g\left(X_{n}\right) \xrightarrow{p} g(c)$ for any continuous function g.
2. if $X_{n} \xrightarrow{p} a$ and $Z_{n} \xrightarrow{p} b$, then

- $X_{n}+Z_{n} \xrightarrow{p} a+b$
- $X_{n} Z_{n} \xrightarrow{p} a b$
- $X_{n} / Z_{n} \xrightarrow{p} a / b$ if $b>0$
- Thus, by LLN and CMT:
- $\left(\bar{X}_{n}\right)^{2} \xrightarrow{p} \mu^{2}$
- $\log \left(\bar{X}_{n}\right) \xrightarrow{p} \log (\mu)$

Difference in means example

$$
\widehat{\tau}_{n}=\frac{\sum_{i=1}^{n} Y_{i} D_{i}}{\sum_{i=1}^{n} D_{i}}-\frac{\sum_{i=1}^{n} Y_{i}\left(1-D_{i}\right)}{\sum_{i=1}^{n}\left(1-D_{i}\right)}
$$

- What about our difference in means estimator for the transphobia example?
- Let's take the sample mean for the treated units:

$$
\frac{\sum_{i=1}^{n} Y_{i} D_{i}}{\sum_{i=1}^{n} D_{i}}=\frac{\frac{1}{n} \sum_{i=1}^{n} Y_{i} D_{i}}{\frac{1}{n} \sum_{i=1}^{n} D_{i}} \xrightarrow{p} \frac{\mathbb{E}\left[Y_{i} D_{i}\right]}{\mathbb{E}\left[D_{i}\right]}=\mathbb{E}\left[Y_{i} \mid D_{i}=1\right]
$$

- Last step uses iterated expectations and the fundamental bridge.
- Same idea for the other sample mean implies,

$$
\widehat{\tau}_{n} \xrightarrow{p} \mathbb{E}\left[Y_{i} \mid D_{i}=1\right]-\mathbb{E}\left[Y_{i} \mid D_{i}=0\right]=\tau
$$

- Interpretation: Under iid sampling, adding more units gets us closer and closer to the truth.

Unbiased versus consistent

- By Chebyshev, unbiased estimators are consistent if $\mathbb{V}\left[\hat{\theta}_{n}\right] \rightarrow 0$.
- Unbiased, not consistent: "first observation" estimator, $\hat{\theta}_{n}^{f}=X_{1}$.
- Unbiased because $\mathbb{E}\left[\hat{\theta}_{n}^{f}\right]=\mathbb{E}\left[X_{1}\right]=\mu$
- Not consistent: $\hat{\theta}_{n}^{f}$ is constant in n so its distribution never collapses.
- Said differently: the variance of $\hat{\theta}_{n}^{f}$ never shrinks.
- Consistent, but biased: sample mean with n replaced by $n-1$:

$$
\frac{1}{n-1} \sum_{i=1}^{n} X_{i}=\frac{n}{n-1} \bar{X}_{n} \xrightarrow{p} 1 \times \mu
$$

- Consistent because $n /(n-1) \rightarrow 1$ as $n \rightarrow \infty$.

Multivariate LLN

- Let $\mathbf{X}_{i}=\left(X_{i 1}, \ldots, X_{i k}\right)$ be a random vectors of length k.
- Random (iid) sample of n of these k vectors, $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}$.
- Vector sample mean:

$$
\overline{\mathbf{X}}_{n}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i}=\left(\begin{array}{c}
\bar{X}_{n, 1} \\
\bar{X}_{n, 2} \\
\vdots \\
\bar{X}_{n, k}
\end{array}\right)
$$

- Vector WLLN: if $\mathbb{E}[\|\mathbf{X}\|]<\infty$, then as $n \rightarrow \infty, \overline{\mathbf{X}}_{n} \xrightarrow{p} \mathbb{E}[\mathbf{X}]$.
- Converge in probability of a vector is just convergence of each element.
- $\mathbb{E}[\|\mathbf{X}\|]<\infty$ is equivalent to $\mathbb{E}\left[\left|X_{i j}\right|\right]<\infty$ for each $j=1, \ldots, k$

2/ Central Limit Theorem

Current knowledge

- For i.i.d. r.v.s, X_{1}, \ldots, X_{n}, with $\mathbb{E}\left[X_{i}\right]=\mu$ and $\mathbb{V}\left[X_{i}\right]=\sigma^{2}$ we know that:
- $\mathbb{E}\left[\bar{X}_{n}\right]=\mu$ and $\mathbb{V}\left[\bar{X}_{n}\right]=\frac{\sigma^{2}}{n}$
- \bar{X}_{n} converges to μ as n gets big
- Chebyshev provides some bounds on probabilities.
- Still no distributional assumptions about X_{i} !
- Can we say more?
- Can we approximate $\operatorname{Pr}\left(a<\bar{X}_{n}<b\right)$?
- What family of distributions (Binomial, Uniform, Gamma, etc)?
- Again, need to analyze when n is large.

Convergence in Distribution

Definition

Let Z_{1}, Z_{2}, \ldots, be a sequence of r.v.s, and for $n=1,2, \ldots$ let $F_{n}(u)$ be the c.d.f. of Z_{n}. Then it is said that Z_{1}, Z_{2}, \ldots converges in distribution to r.v. W with c.d.f. $F_{W}(u)$ if

$$
\lim _{n \rightarrow \infty} F_{n}(u)=F_{W}(u)
$$

which we write as $Z_{n} \xrightarrow{d} W$.

- Basically: when n is big, the distribution of Z_{n} is very similar to the distribution of W
- Also known as the asymptotic distribution or large-sample distribution
- We use c.d.f.s here to avoid messy details with discrete vs continuous.
- If $X_{n} \xrightarrow{p} X$, then $X_{n} \xrightarrow{d} X$

Convergence in distribution visualization

Central Limit Theorem

Central Limit Theorem

Let X_{1}, \ldots, X_{n} be i.i.d. r.v.s from a distribution with mean $\mu=\mathbb{E}\left[X_{i}\right]$ and variance $\sigma^{2}=\mathbb{V}\left[X_{i}\right]$. Then if $\mathbb{E}\left[X_{i}^{2}\right]<\infty$, we have

$$
\sqrt{n}\left(\bar{X}_{n}-\mu\right) \xrightarrow{d} \mathcal{N}\left(0, \sigma^{2}\right) .
$$

- Subtle point: why center and scale by \sqrt{n} ?
- The LLN implied that $\bar{X}_{n} \xrightarrow{p} \mu$ so $\bar{X}_{n} \xrightarrow{d} \mu$, which isn't very helpful!
- $\sqrt{n}\left(\bar{X}_{n}-\mu\right)$ is more "stable" since its variance doesn't depend on n
- But we can use the result to get an approximation: $\bar{X}_{n} \stackrel{a}{\sim} N\left(\mu, \sigma^{2} / n\right)$,
- $\stackrel{a}{\sim}$ is "approximately distributed as".
- No assumptions about the distribution of X_{i} except finite variance.
- \rightsquigarrow approximations to probability statements about \bar{X}_{n} when n is big!

CLT by simulation in R

```
set.seed(02138)
nsims <- 10000
holder2 <- matrix(NA, nrow = nsims, ncol = 6)
for (i in 1:nsims) {
    s5 <- rbinom(n = 5, size = 1, prob = 0.25)
    s15<- rbinom(n = 15, size = 1, prob = 0.25)
    s30<- rbinom(n = 30, size = 1, prob = 0.25)
    s100 <- rbinom(n = 100, size = 1, prob = 0.25)
    s1000 <- rbinom(n = 1000, size = 1, prob = 0.25)
    s10000 <- rbinom(n = 10000, size = 1, prob = 0.25)
    holder2[i,1] <- mean(s5)
    holder2[i,2] <- mean(s15)
    holder2[i,3] <- mean(s30)
    holder2[i,4] <- mean(s100)
    holder2[i,5] <- mean(s1000)
    holder2[i,6] <- mean(s10000)
}
```


CLT in action

- Distribution of $\frac{\bar{X}_{5}-\mu}{\sigma / \sqrt{5}}$

CLT in action

- Distribution of $\frac{\bar{X}_{15}-\mu}{\sigma / \sqrt{15}}$

CLT in action

- Distribution of $\frac{\bar{X}_{30}-\mu}{\sigma / \sqrt{30}}$

CLT in action

- Distribution of $\frac{\bar{X}_{100}-\mu}{\sigma / \sqrt{100}}$

CLT in action

- Distribution of $\frac{\bar{x}_{1000}-\mu}{\sigma / \sqrt{10000}}$

CLT for plug-in estimators

- Setting: X_{1}, \ldots, X_{n} i.i.d. with quantity of interest $\theta=\mathbb{E}\left[g\left(X_{i}\right)\right]$
- Let $V_{\theta}=\mathbb{V}\left[g\left(X_{i}\right)\right]=\mathbb{E}\left[\left(g\left(X_{i}\right)-\theta\right)^{2}\right]$.
- Analogy/plug-in estimator: $\hat{\theta}_{n}=\frac{1}{n} \sum_{i=1}^{n} g\left(X_{i}\right)$
- By the CLT, if $\mathbb{E}\left[g\left(X_{i}\right)^{2}\right]<\infty$ then

$$
\sqrt{n}\left(\hat{\theta}_{n}-\theta\right) \xrightarrow{d} \mathcal{N}\left(0, V_{\theta}\right)
$$

- Any estimator that has this property is called asymptotically normal
- V_{θ} is the variance of this centered/scaled version of the estimator.
- The approximate variance of the estimator itself will be $\mathbb{V}\left[\hat{\theta}_{n}\right] \stackrel{a}{=} V_{\theta} / n$
- The approximate standard error will be se $\left[\hat{\theta}_{n}\right]=\sqrt{V_{\theta} / n}$

Why is asymptotic normality important?

- An estimator $\hat{\theta}_{n}$ for θ is asymptotically normal when

$$
\sqrt{n}\left(\hat{\theta}_{n}-\theta\right) \xrightarrow{d} \mathcal{N}\left(0, V_{\theta}\right)
$$

- Allows us to approximate the probability of $\hat{\theta}_{n}$ being far away from θ in large samples.
- Warning: you do not know if you sample is big enough for this to be a good approximation.

Transformations

- Continuous mapping theorem: for continuous g, we have

$$
Z_{n} \xrightarrow{d} Z \quad \Longrightarrow \quad g\left(Z_{n}\right) \xrightarrow{d} g(Z) .
$$

- Let X_{1}, X_{2}, \ldots converge in distribution to some r.v. X
- Let Y_{1}, Y_{2}, \ldots converge in probability to some number, c
- Slutsky's Theorem gives the following result:

1. $X_{n} Y_{n}$ converges in distribution to $c X$
2. $X_{n}+Y_{n}$ converges in distribution to $X+c$
3. X_{n} / Y_{n} converges in distribution to X / c if $c \neq 0$

- Extremely useful when trying to figure out what the large-sample distribution of an estimator is.

Variance estimation with plug-in estimators

- Plug-in CLT:

$$
\sqrt{n}\left(\hat{\theta}_{n}-\theta\right) \xrightarrow{d} \mathcal{N}\left(0, V_{\theta}\right), \quad V_{\theta}=\mathbb{E}\left[\left(g\left(X_{i}\right)-\theta\right)^{2}\right]
$$

- But we don't know V_{θ} ?! Estimate it!

$$
\widehat{V}_{\theta}=\frac{1}{n} \sum_{i=1}^{n}\left(g\left(X_{i}\right)-\hat{\theta}_{n}\right)^{2}
$$

- We can show that $\widehat{V}_{\theta} \xrightarrow{p} V_{\theta}$ and so by Slutsky:

$$
\frac{\sqrt{n}\left(\hat{\theta}_{n}-\theta\right)}{\sqrt{\widehat{V}_{\theta}}} \xrightarrow[\rightarrow]{d} \frac{\mathcal{N}\left(0, V_{\theta}\right)}{\sqrt{V_{\theta}}} \sim \mathcal{N}(0,1)
$$

Multivariate CLT

- Convergence in distribution is the same vector \mathbf{Z}_{n} : convergence of c.d.f.s
- Allow us to generalize the CLT to random vectors:

Multivariate Central Limit Theorem

If $\mathbf{X}_{i} \in \mathbb{R}^{k}$ are i.i.d. and $\mathbb{E}\left\|\mathbf{X}_{i}\right\|^{2}<\infty$, then as $n \rightarrow \infty$,

$$
\sqrt{n}\left(\overline{\mathbf{X}}_{n}-\boldsymbol{\mu}\right) \xrightarrow{d} \mathcal{N}(0, \boldsymbol{\Sigma}),
$$

where $\boldsymbol{\mu}=\mathbb{E}\left[\mathbf{X}_{i}\right]$ and $\boldsymbol{\Sigma}=\mathbb{V}\left[\mathbf{X}_{i}\right]=\mathbb{E}\left[\left(\mathbf{X}_{i}-\boldsymbol{\mu}\right)\left(\mathbf{X}_{i}-\boldsymbol{\mu}\right)^{\prime}\right]$.

- $\mathbb{E}\left\|\mathbf{X}_{i}\right\|^{2}<\infty$ is equivalent to $\mathbb{E}\left[X_{i, j}^{2}\right]<\infty$ for all $j=1, \ldots, k$.
- Basically: multivariate CLT holds if each r.v. in the vector has finite variance.
- Very common for when we're estimating multiple parameters θ with $\hat{\theta}_{n}$

3/ Confidence intervals

Interval estimation - what and why?

- $\hat{\theta}_{n}$ is our best guess about θ
- But $\mathbb{P}\left(\hat{\theta}_{n}=\theta\right)=0$!
- Alternative: produce a range of plausible values instead of one number.
- Hopefully will increase the chance that we've captured the truth.
- We can use the distribution of estimators (CLT!!) to derive these intervals.

What is a confidence interval?

Definition

A $1-\alpha$ confidence interval for a population parameter θ is a pair of statistics $L=L\left(X_{1}, \ldots, X_{n}\right)$ and $U=U\left(X_{1}, \ldots, X_{n}\right)$ such that $L<U$ and such that

$$
\mathbb{P}(L \leq \theta \leq U)=1-\alpha, \quad \forall \theta
$$

- Random interval (L, U) will contain the truth $1-\alpha$ of the time.
- $\mathbb{P}(L \leq \theta \leq U)$ is the coverage probability of the Cl
- Extremely useful way to represent our uncertainty about our estimate.
- Shows a range of plausible values given the data.
- A sequence of $\mathrm{Cls},\left[L_{n}, U_{n}\right]$ are asymptotically valid if the coverage probability converges to correct level:

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(L_{n} \leq \theta \leq U_{n}\right)=1-\alpha
$$

Asymptotic confidence intervals

- A sequence of $\mathrm{Cls},\left[L_{n}, U_{n}\right]$ are asymptotically valid if the coverage probability converges to correct level:

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(L_{n} \leq \theta \leq U_{n}\right)=1-\alpha
$$

- We can derive such CIs when our estimators are asymptotically normal:

$$
\frac{\hat{\theta}_{n}-\theta}{\widehat{\operatorname{se}}\left(\hat{\theta}_{n}\right)} \xrightarrow{d} \mathcal{N}(0,1)
$$

- Then as $n \rightarrow \infty$

$$
\mathbb{P}\left(-1.96 \leq \frac{\hat{\theta}_{n}-\theta}{\widehat{\operatorname{se}}(\hat{\theta})} \leq 1.96\right) \rightarrow 0.95
$$

Deriving the $95 \% \mathrm{Cl}$

$$
\begin{array}{r}
\mathbb{P}\left(-1.96 \leq \frac{\hat{\theta}_{n}-\theta}{\widehat{\operatorname{se}}\left(\hat{\theta}_{n}\right)} \leq 1.96\right) \rightarrow 0.95 \\
\mathbb{P}\left(-1.96 \cdot \widehat{\operatorname{se}}\left(\hat{\theta}_{n}\right) \leq \hat{\theta}_{n}-\theta \leq 1.96 \cdot \widehat{\operatorname{se}}\left(\hat{\theta}_{n}\right)\right) \rightarrow 0.95 \\
\mathbb{P}\left(-\hat{\theta}_{n}-1.96 \cdot \widehat{\operatorname{se}}\left(\hat{\theta}_{n}\right) \leq-\theta \leq-\hat{\theta}_{n}+1.96 \cdot \widehat{\operatorname{se}}\left(\hat{\theta}_{n}\right)\right) \rightarrow 0.95 \\
\mathbb{P}\left(\hat{\theta}_{n}-1.96 \cdot \widehat{\operatorname{se}}\left(\hat{\theta}_{n}\right) \leq \theta \leq \hat{\theta}_{n}+1.96 \cdot \widehat{\operatorname{se}}\left(\hat{\theta}_{n}\right)\right) \rightarrow 0.95
\end{array}
$$

- Lower bound: $\hat{\theta}_{n}-1.96 \cdot \operatorname{se}\left(\hat{\theta}_{n}\right)$
- Upper bound: $\hat{\theta}_{n}+1.96 \cdot \operatorname{se}\left(\hat{\theta}_{n}\right)$

Finding the critical values

$\mathbb{P}\left(-z_{1-\alpha / 2} \leq \frac{\hat{\theta}_{n}-\theta}{\widehat{\operatorname{se}}\left(\hat{\theta}_{n}\right)} \leq z_{1-\alpha / 2}\right) \rightarrow 1-\alpha \quad \Longrightarrow \quad(1-\alpha) \mathrm{Cl}: \hat{\theta}_{n} \pm z_{1-\alpha / 2} \cdot \widehat{\operatorname{se}}\left(\hat{\theta}_{n}\right)$

- How do we figure out what $z_{1-\alpha / 2}$ will be?
- Intuitively, we want the z values that puts $\alpha / 2$ in each of the tails.
- Because normal is symmetric, we have $z_{\alpha / 2}=-z_{1-\alpha / 2}$
- Use the quantile function: $z_{1-\alpha / 2}=\Phi^{-1}(1-\alpha / 2)$ (qnorm in R)

CI for social pressure effect

TABLE 2. Effects of Four Mail Treatments on Voter Turnout in the August 2006 Primary Election

	Experimental Group				
	Control	Civic Duty	Hawthorne	Self	Neighbors
Percentage Voting	29.7%	31.5%	32.2%	34.5%	37.8%
N of Individuals	191,243	38,218	38,204	38,218	38,201

```
neigh_var <- var(social$voted[social$treatment == "Neighbors"])
neigh_n <- 38201
civic_var <- var(social$voted[social$treatment == "Civic Duty"])
civic_n <- }3821
se_diff <- sqrt(neigh_var/neigh_n + civic_var/civic_n)
## c(lower, upper)
c((0.378 - 0.315) - 1.96 * se_diff, (0.378 - 0.315) + 1.96 * se_diff)
```

\#\# [1] 0.05630 .0697

Interpreting the confidence interval

- Caution: a common incorrect interpretation of a confidence interval:
- "I calculated a 95% confidence interval of [0.05,0.13], which means that there is a 95% chance that the true difference in means in is that interval."
- This is WRONG.
- The true value of the population mean, μ, is fixed.
- It is either in the interval or it isn't-there's no room for probability at all.
- The randomness is in the interval: $\bar{X}_{n} \pm 1.96 S_{n} / \sqrt{n}$.
- Correct interpretation: across 95% of random samples, the constructed confidence interval will contain the true value.

Confidence interval simulation

- Draw samples of size 500 (pretty big) from $\mathcal{N}(1,10)$
- Calculate confidence intervals for the sample mean:

$$
\bar{X}_{n} \pm 1.96 \times \widehat{\operatorname{se}}\left[\bar{X}_{n}\right] \rightsquigarrow \bar{X}_{n} \pm 1.96 \times S_{n} / \sqrt{n}
$$

```
sims<- 10000
cover <- rep(0, times = sims)
low.bound <- up.bound <- rep(NA, times = sims)
for(i in 1:sims){
    draws <- rnorm(500, mean = 1, sd = sqrt(10))
    low.bound[i] <- mean(draws) - sd(draws) / sqrt(500) * 1.96
    up.bound[i] <- mean(draws) + sd(draws) / sqrt(500) * 1.96
    if (low.bound[i] < 1 & up.bound[i] > 1) {
        cover[i] <- 1
    }
}
mean(cover)
```

\#\# [1] 0.95

Plotting the Cls

Trial

- Question What happens to the size of the confidence interval when we increase our confidence, from say 95% to 99% ? Do confidence intervals get wider or shorter?
- Answer Wider!
- Decreases $\alpha \rightsquigarrow$ increases $1-\alpha / 2 \rightsquigarrow$ increases $z_{\alpha / 2}$

4/ Delta method

Delta method

Delta method

If $\sqrt{n}\left(\hat{\theta}_{n}-\theta\right) \xrightarrow{d} \mathcal{N}\left(0, V_{\theta}\right)$ and $h(u)$ is continuously differentiable in a neighborhood around θ, then as $n \rightarrow \infty$,

$$
\sqrt{n}\left(h\left(\hat{\theta}_{n}\right)-h(\theta)\right) \xrightarrow{d} \mathcal{N}\left(0,\left(h^{\prime}(\theta)\right)^{2} V_{\theta}\right) .
$$

- Why $h()$ continuously differentiable?
- Near θ we can approximate $h()$ with a line where h^{\prime} is the slope.
- So $h\left(\hat{\theta}_{n}\right)-h(\theta) \approx h^{\prime}(\theta)\left(\hat{\theta}_{n}-\theta\right)$
- Examples:
- $\sqrt{n}\left(\bar{X}_{n}^{2}-\mu^{2}\right) \xrightarrow{d} \mathcal{N}\left(0,(2 \mu)^{2} \sigma^{2}\right)$
- $\sqrt{n}\left(\log \left(\bar{X}_{n}\right)-\log (\mu)\right) \xrightarrow{d} \mathcal{N}\left(0, \sigma^{2} / \mu^{2}\right)$

Multivariate Delta Method

- What if we want to know the asymptotic distribution of a function of $\hat{\theta}_{n}$?
- Let $\mathbf{h}(\theta)$ map from $\mathbb{R}^{k} \rightarrow \mathbb{R}^{m}$ and be continuously differentiable.
- Ex: $\mathbf{h}\left(\theta_{1}, \theta_{2}, \theta_{3}\right)=\left(\theta_{2} / \theta_{1}, \theta_{3} / \theta_{1}\right)$, from $\mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$
- Like univariate case, we need the derivatives arranged in $m \times k$ Jacobian matrix:

$$
\mathbf{H}(\boldsymbol{\theta})=\nabla_{\boldsymbol{\theta}} \mathbf{h}(\boldsymbol{\theta})=\left(\begin{array}{cccc}
\frac{\partial h_{1}}{\partial \theta_{1}} & \frac{\partial h_{1}}{\partial \theta_{2}} & \cdots & \frac{\partial h_{1}}{\partial \theta_{k}} \\
\frac{\partial h_{2}}{\partial \theta_{1}} & \frac{\partial h_{2}}{\partial \theta_{2}} & \cdots & \frac{\partial h_{2}}{\partial \theta_{k}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial h_{m}}{\partial \theta_{1}} & \frac{\partial h_{m}}{\partial \theta_{2}} & \cdots & \frac{\partial h_{m}}{\partial \theta_{k}}
\end{array}\right)
$$

- Multivariate delta method: if $\sqrt{n}\left(\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}\right) \xrightarrow{d} \mathcal{N}(0, \boldsymbol{\Sigma})$, then

$$
\sqrt{n}\left(\mathbf{h}\left(\hat{\boldsymbol{\theta}}_{n}\right)-\mathbf{h}(\boldsymbol{\theta})\right) \xrightarrow{d} \mathcal{N}\left(0, \mathbf{H}(\boldsymbol{\theta}) \boldsymbol{\Sigma} \mathbf{H}(\boldsymbol{\theta})^{\prime}\right)
$$

Stochastic order notation

- When working with asymptotics, it's often useful to have some shorthand.
- Order notation for deterministic sequences:
- If $a_{n} \rightarrow 0$, then we write $a_{n}=o(1)$ ("little-oh-one")
- If $n^{-\lambda} a_{n} \rightarrow 0$, we write $a_{n}=o\left(n^{\lambda}\right)$
- If a_{n} is bounded, we write $a_{n}=O(1)$ ("big-oh-one")
- If $n^{-\lambda} a_{n}$ is bounded, we write $a_{n}=O\left(n^{\lambda}\right)$
- Stochastic order notation for random sequence, Z_{n}
- If $Z_{n} \xrightarrow{p} 0$, we write $Z_{n}=o_{p}(1)$ ("little-oh-p-one").
- For any consistent estimator, we have $\hat{\theta}_{n}=\theta+o_{p}(1)$
- If $a_{n}^{-1} Z_{n} \xrightarrow{p} 0$, we write $Z_{n}=o_{p}\left(a_{n}\right)$

Bounded in probability

Definition

A random sequence Z_{n} is bounded in probability, written $Z_{n}=O_{p}(1)$
("big-oh-p-one") for all $\delta>0$ there exists a M_{δ} and n_{δ}, such that for $n \geq n_{\delta}$,

$$
\mathbb{P}\left(\left|Z_{n}\right|>M_{\delta}\right)<\delta
$$

- $Z_{n}=o_{p}(1)$ implies $Z_{n}=O_{p}(1)$ but not the reverse.
- If Z_{n} converges in distribution, it is $O_{p}(1)$, so if the CLT applies we have:

$$
\sqrt{n}\left(\hat{\theta}_{n}-\theta\right)=O_{p}(1)
$$

- If $a_{n}^{-1} Z_{n}=O_{p}(1)$, we write $Z_{n}=O_{p}\left(a_{n}\right)$, so we have: $\hat{\theta}_{n}=\theta+O_{p}\left(n^{-1 / 2}\right)$.

