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Where are we? Where are we going?

• Last time: introducing estimators, looking at finite-sample properties.

• Now: can we say more as sample size grows?
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Political canvassing study

• Can canvassers change minds about topics like transgender rights?

• Experimental setting:

• Randomly assign canvassers to have a conversation about transgender
right or a conversation about recycling.

• Trans rights conversations focused on “perspective taking”

• Outcome of interest: support for trans rights policies.
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Translating into math

• Outcome: 𝘠𝘪 ∈ {𝟣 (least supportive), 𝟤, 𝟥, 𝟦, 𝟧 (most supportive)}

• Treatment: 𝘋𝘪 ∈ {𝟢 (recycling script), 𝟣 (trans rights script)}

• Goal is to learn something about the joint distribution of (𝘠𝘪 , 𝘋𝘪 ).

• Typical estimand would be the difference in conditional expectations:

𝜏 = 𝔼[𝘠𝘪 ∣ 𝘋𝘪 = 𝟣] − 𝔼[𝘠𝘪 ∣ 𝘋𝘪 = 𝟢]

• Typical plug in estimator would be the difference in sample means:

𝜏𝘯 = ∑𝘯
𝘪=𝟣 𝘠𝘪𝘋𝘪

∑𝘯
𝘪=𝟣 𝘋𝘪

− ∑𝘯
𝘪=𝟣 𝘠𝘪 (𝟣 − 𝘋𝘪 )

∑𝘯
𝘪=𝟣(𝟣 − 𝘋𝘪 )

• Today: what happens to the distribution of 𝜏𝘯 as 𝘯 grows?
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1/ Asymptotics



Current knowledge

• For i.i.d. r.v.s, 𝘟𝟣, … , 𝘟𝘯, with 𝔼[𝘟𝘪 ] = 𝜇 and 𝕍[𝘟𝘪 ] = 𝜎 𝟤 we know that:

• 𝘟 𝘯 is unbiased, 𝔼[𝘟 𝘯] = 𝔼[𝘟𝘪 ] = 𝜇
• Sampling variance is 𝕍[𝘟 𝘯] = 𝜎 𝟤

𝘯 where 𝜎 𝟤 = 𝕍[𝘟𝘪 ]
• None of these rely on a specific distribution for 𝘟𝘪 !

• Assuming 𝘟𝘪 ∼ 𝒩(𝜇, 𝜎 𝟤), we know the exact distribution of 𝘟 𝘯.

• What if the data isn’t normal? What is the sampling distribution of 𝘟 𝘯?

• Asymptotics: approximate the sampling distribution of 𝘟 𝘯 as 𝘯 gets big.
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Sequence of sample means

• What can we say about the sample mean 𝘯 gets large?

• Need to think about sequences of sample means with increasing 𝘯:

𝘟 𝟣 = 𝘟𝟣

𝘟 𝟤 = (𝟣/𝟤) ⋅ (𝘟𝟣 + 𝘟𝟤)
𝘟 𝟥 = (𝟣/𝟥) ⋅ (𝘟𝟣 + 𝘟𝟤 + 𝘟𝟥)
𝘟 𝟦 = (𝟣/𝟦) ⋅ (𝘟𝟣 + 𝘟𝟤 + 𝘟𝟥 + 𝘟𝟦)
𝘟 𝟧 = (𝟣/𝟧) ⋅ (𝘟𝟣 + 𝘟𝟤 + 𝘟𝟥 + 𝘟𝟦 + 𝘟𝟧)

⋮
𝘟 𝘯 = (𝟣/𝘯) ⋅ (𝘟𝟣 + 𝘟𝟤 + 𝘟𝟥 + 𝘟𝟦 + 𝘟𝟧 + ⋯ + 𝘟𝘯)

• Note: this is a sequence of random variables!
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Asymptotics and Limits

• Asymptotic analysis is about making approximations to finite sample
properties.

• Useful to know some properties of deterministic sequences:

Definition
A sequence {𝘢𝘯 ∶ 𝘯 = 𝟣, 𝟤, …} has the limit 𝘢 written 𝘢𝘯 → 𝘢 as 𝘯 → ∞ if for all
𝛿 > 𝟢 there is some 𝘯𝛿 < ∞ such that for all 𝘯 ≥ 𝘯𝛿 , |𝘢𝘯 − 𝘢| ≤ 𝛿.

• 𝘢𝘯 gets closer and closer to 𝘢 as 𝘯 gets larger (𝘢𝘯 converges to 𝘢)

• {𝘢𝘯 ∶ 𝘯 = 𝟣, 𝟤, …} is bounded if there is 𝘣 < ∞ such that |𝘢𝘯| < 𝘣 for all 𝘯.
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A sequence {𝘢𝘯 ∶ 𝘯 = 𝟣, 𝟤, …} has the limit 𝘢 written 𝘢𝘯 → 𝘢 as 𝘯 → ∞ if for all
𝛿 > 𝟢 there is some 𝘯𝛿 < ∞ such that for all 𝘯 ≥ 𝘯𝛿 , |𝘢𝘯 − 𝘢| ≤ 𝛿.

• 𝘢𝘯 gets closer and closer to 𝘢 as 𝘯 gets larger (𝘢𝘯 converges to 𝘢)

• {𝘢𝘯 ∶ 𝘯 = 𝟣, 𝟤, …} is bounded if there is 𝘣 < ∞ such that |𝘢𝘯| < 𝘣 for all 𝘯.
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Limit example: (n-1)/n
Definition
A sequence {𝘢𝘯 ∶ 𝘯 = 𝟣, 𝟤, …} has the limit 𝘢 written 𝘢𝘯 → 𝘢 as 𝘯 → ∞ if for all
𝛿 > 𝟢 there is some 𝘯𝛿 < ∞ such that for all 𝘯 ≥ 𝘯𝛿 , |𝘢𝘯 − 𝘢| ≤ 𝛿.

n  

1 +δ 2

1

1 −δ 2

an

nδ
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Convergence in Probability
Definition
A sequence of random variables, {𝘡𝘯 ∶ 𝘯 = 𝟣, 𝟤, …}, is said to converge in
probability to a value 𝘣 if for every 𝜀 > 𝟢,

ℙ(|𝘡𝘯 − 𝘣| > 𝜀) → 𝟢,

as 𝘯 → ∞. We write this 𝘡𝘯
𝘱

→ 𝘣.

• Basically: probability that 𝘡𝘯 lies outside any (teeny, tiny) interval
around 𝘣 approaches 0 as 𝘯 → ∞

• Economists writes plim(𝘡𝘯) = 𝘣 if 𝘡𝘯
𝘱

→ 𝘣.

• An estimator is consistent if ̂𝜃𝘯
𝘱

→ 𝜃.

• Distribution of ̂𝜃𝘯 collapses on 𝜃 as 𝘯 → ∞.
• Inconsistent estimator are bad bad bad: more data gives worse answers!
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Convergence in probability visually
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Law of large numbers

Weak Law of Large Numbers

Let 𝘟𝟣, … , 𝘟𝘯 be a an i.i.d. draws from a distribution with mean 𝔼[|𝘟𝘪 |] < ∞.
Let 𝘟 𝘯 = 𝟣

𝘯 ∑𝘯
𝘪=𝟣 𝘟𝘪 . Then, 𝘟 𝘯

𝘱
→ 𝔼[𝘟𝘪 ].

• Note: we don’t assume finite variance, only finite expectation.

• Intuition: The probability of 𝘟 𝘯 being “far away” from 𝜇 goes to 0 as 𝘯
gets big.

• Implies general consistency of plug-in estimators

• If 𝔼[|𝘨(𝘟𝘪 )|] < ∞, then 𝟣
𝘯 ∑𝘯

𝘪=𝟣 𝘨(𝘟𝘪 )
𝘱

→ 𝔼[𝘨(𝘟𝘪 )]
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LLN by simulation in R
• Draw different sample sizes from Exponential distribution with rate 0.5

• ⇝ 𝔼[𝘟𝘪 ] = 𝟤
nsims <- 10000
holder <- matrix(NA, nrow = nsims, ncol = 6)
for (i in 1:nsims) {

s5 <- rexp(n = 5, rate = 0.5)
s15 <- rexp(n = 15, rate = 0.5)
s30 <- rexp(n = 30, rate = 0.5)
s100 <- rexp(n = 100, rate = 0.5)
s1000 <- rexp(n = 1000, rate = 0.5)
s10000 <- rexp(n = 10000, rate = 0.5)

holder[i,1] <- mean(s5)
holder[i,2] <- mean(s15)
holder[i,3] <- mean(s30)
holder[i,4] <- mean(s100)
holder[i,5] <- mean(s1000)
holder[i,6] <- mean(s10000)

}
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LLN in action
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LLN in action
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LLN in action
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Chebyshev Inequality

• How can we show convergence in probability? Can verify if we know
specific distribution of ̂𝜃.

• But can we say anything for arbitrary distributions?

Chebyshev Inequality

Suppose that 𝘟 is r.v. for which 𝕍[𝘟] < ∞. Then, for every real number 𝛿 > 𝟢,

ℙ(|𝘟 − 𝔼[𝘟]| ≥ 𝛿) ≤ 𝕍[𝘟]
𝛿 𝟤 .

• Variance places limits on how far an observation can be from its mean.
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Proof of Chebyshev

• Let 𝘡 = 𝘟 − 𝔼[𝘟] with density 𝘧𝘡 (𝘹). Probability is just integral over the
region:

ℙ (|𝘡 | ≥ 𝛿) = ∫
|𝘹 |≥𝛿

𝘧𝘡 (𝘹)𝘥𝘹

• Note that where |𝘹 | ≥ 𝛿, we have 𝟣 ≤ 𝘹𝟤/𝛿 𝟤, so

ℙ (|𝘡 | ≥ 𝛿) ≤ ∫
|𝘹 |≥𝛿

𝘹𝟤

𝛿 𝟤 𝘧𝘡 (𝘹)𝘥𝘹 ≤ ∫
∞

−∞

𝘹𝟤

𝛿 𝟤 𝘧𝘡 (𝘹)𝘥𝘹 = 𝔼[𝘡 𝟤]
𝛿 𝟤 = 𝕍[𝘟]

𝛿 𝟤

• Under finite variance, applying this to |𝘟 𝘯 − 𝜇| proves the LLN.
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Properties of convergence in probability

1. Continuous mapping theorem: if 𝘟𝘯
𝘱

→ 𝘤 , then 𝘨(𝘟𝘯)
𝘱

→ 𝘨(𝘤) for any
continuous function 𝘨 .

2. if 𝘟𝘯
𝘱

→ 𝘢 and 𝘡𝘯
𝘱

→ 𝘣, then

• 𝘟𝘯 + 𝘡𝘯
𝘱

→ 𝘢 + 𝘣
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Difference in means example

𝜏𝘯 = ∑𝘯
𝘪=𝟣 𝘠𝘪𝘋𝘪

∑𝘯
𝘪=𝟣 𝘋𝘪

− ∑𝘯
𝘪=𝟣 𝘠𝘪 (𝟣 − 𝘋𝘪 )

∑𝘯
𝘪=𝟣(𝟣 − 𝘋𝘪 )

• What about our difference in means estimator for the transphobia
example?

• Let’s take the sample mean for the treated units:

∑𝘯
𝘪=𝟣 𝘠𝘪𝘋𝘪

∑𝘯
𝘪=𝟣 𝘋𝘪

=
𝟣
𝘯 ∑𝘯

𝘪=𝟣 𝘠𝘪𝘋𝘪
𝟣
𝘯 ∑𝘯

𝘪=𝟣 𝘋𝘪

𝘱
→ 𝔼[𝘠𝘪𝘋𝘪 ]

𝔼[𝘋𝘪 ]
= 𝔼[𝘠𝘪 ∣ 𝘋𝘪 = 𝟣]

• Last step uses iterated expectations and the fundamental bridge.

• Same idea for the other sample mean implies,

𝜏𝘯
𝘱

→ 𝔼[𝘠𝘪 ∣ 𝘋𝘪 = 𝟣] − 𝔼[𝘠𝘪 ∣ 𝘋𝘪 = 𝟢] = 𝜏

• Interpretation: Under iid sampling, adding more units gets us closer
and closer to the truth.
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Unbiased versus consistent

• By Chebyshev, unbiased estimators are consistent if 𝕍[ ̂𝜃𝘯] → 𝟢.

• Unbiased, not consistent: “first observation” estimator, ̂𝜃𝘧
𝘯 = 𝘟𝟣.

• Unbiased because 𝔼[ ̂𝜃𝘧
𝘯] = 𝔼[𝘟𝟣] = 𝜇

• Not consistent: ̂𝜃𝘧
𝘯 is constant in 𝘯 so its distribution never collapses.

• Said differently: the variance of ̂𝜃𝘧
𝘯 never shrinks.

• Consistent, but biased: sample mean with 𝘯 replaced by 𝘯 − 𝟣:

𝟣
𝘯 − 𝟣

𝘯
∑
𝘪=𝟣

𝘟𝘪 = 𝘯
𝘯 − 𝟣𝘟 𝘯

𝘱
→ 𝟣 × 𝜇

• Consistent because 𝘯/(𝘯 − 𝟣) → 𝟣 as 𝘯 → ∞.
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Multivariate LLN

• Let 𝗫𝘪 = (𝘟𝘪𝟣, … , 𝘟𝘪𝘬) be a random vectors of length 𝘬 .

• Random (iid) sample of 𝘯 of these 𝘬 vectors, 𝗫𝟣, … , 𝗫𝘯.

• Vector sample mean:

𝗫𝘯 = 𝟣
𝘯

𝘯
∑
𝘪=𝟣

𝗫𝘪 =
⎛⎜⎜⎜⎜⎜
⎝

𝘟 𝘯,𝟣
𝘟 𝘯,𝟤

⋮
𝘟 𝘯,𝘬

⎞⎟⎟⎟⎟⎟
⎠

• Vector WLLN: if 𝔼[‖𝗫‖] < ∞, then as 𝘯 → ∞, 𝗫𝘯
𝘱

→ 𝔼[𝗫].

• Converge in probability of a vector is just convergence of each element.
• 𝔼[‖𝗫‖] < ∞ is equivalent to 𝔼[|𝘟𝘪 𝘫 |] < ∞ for each 𝘫 = 𝟣, … , 𝘬
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2/ Central Limit Theorem



Current knowledge

• For i.i.d. r.v.s, 𝘟𝟣, … , 𝘟𝘯, with 𝔼[𝘟𝘪 ] = 𝜇 and 𝕍[𝘟𝘪 ] = 𝜎 𝟤 we know that:

• 𝔼[𝘟 𝘯] = 𝜇 and 𝕍[𝘟 𝘯] = 𝜎 𝟤
𝘯

• 𝘟 𝘯 converges to 𝜇 as 𝘯 gets big
• Chebyshev provides some bounds on probabilities.
• Still no distributional assumptions about 𝘟𝘪 !

• Can we say more?

• Can we approximate Pr(𝘢 < 𝘟 𝘯 < 𝘣)?
• What family of distributions (Binomial, Uniform, Gamma, etc)?

• Again, need to analyze when 𝘯 is large.
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Convergence in Distribution

Definition
Let 𝘡𝟣, 𝘡𝟤, …, be a sequence of r.v.s, and for 𝘯 = 𝟣, 𝟤, … let 𝘍𝘯(𝘶) be the c.d.f.
of 𝘡𝘯. Then it is said that 𝘡𝟣, 𝘡𝟤, … converges in distribution to r.v. 𝘞 with
c.d.f. 𝘍𝘞 (𝘶) if

lim
𝘯→∞

𝘍𝘯(𝘶) = 𝘍𝘞 (𝘶),

which we write as 𝘡𝘯
𝘥→ 𝘞 .

• Basically: when 𝘯 is big, the distribution of 𝘡𝘯 is very similar to the
distribution of 𝘞

• Also known as the asymptotic distribution or large-sample distribution

• We use c.d.f.s here to avoid messy details with discrete vs continuous.

• If 𝘟𝘯
𝘱

→ 𝘟 , then 𝘟𝘯
𝘥→ 𝘟
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Convergence in distribution visualization

𝘡𝘯 ∼ 𝘕(𝟣/𝘯, 𝟣 + 𝟣/𝘯) 𝘥→ 𝘕(𝟢, 𝟣)
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Central Limit Theorem
Central Limit Theorem
Let 𝘟𝟣, … , 𝘟𝘯 be i.i.d. r.v.s from a distribution with mean 𝜇 = 𝔼[𝘟𝘪 ] and
variance 𝜎 𝟤 = 𝕍[𝘟𝘪 ]. Then if 𝔼[𝘟 𝟤

𝘪 ] < ∞, we have

√𝘯 (𝘟 𝘯 − 𝜇) 𝘥→ 𝒩(𝟢, 𝜎 𝟤).

• Subtle point: why center and scale by
√𝘯?

• The LLN implied that 𝘟 𝘯
𝘱

→ 𝜇 so 𝘟 𝘯
𝘥→ 𝜇, which isn’t very helpful!

•
√𝘯 (𝘟 𝘯 − 𝜇) is more “stable” since its variance doesn’t depend on 𝘯

• But we can use the result to get an approximation: 𝘟 𝘯
𝘢∼ 𝘕(𝜇, 𝜎 𝟤/𝘯),

• 𝘢∼ is “approximately distributed as”.

• No assumptions about the distribution of 𝘟𝘪 except finite variance.

• ⇝ approximations to probability statements about 𝘟 𝘯 when 𝘯 is big!
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CLT by simulation in R

set.seed(02138)
nsims <- 10000
holder2 <- matrix(NA, nrow = nsims, ncol = 6)
for (i in 1:nsims) {
s5 <- rbinom(n = 5, size = 1, prob = 0.25)
s15 <- rbinom(n = 15, size = 1, prob = 0.25)
s30 <- rbinom(n = 30, size = 1, prob = 0.25)
s100 <- rbinom(n = 100, size = 1, prob = 0.25)
s1000 <- rbinom(n = 1000, size = 1, prob = 0.25)
s10000 <- rbinom(n = 10000, size = 1, prob = 0.25)

holder2[i,1] <- mean(s5)
holder2[i,2] <- mean(s15)
holder2[i,3] <- mean(s30)
holder2[i,4] <- mean(s100)
holder2[i,5] <- mean(s1000)
holder2[i,6] <- mean(s10000)

}
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CLT in action
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CLT in action
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CLT in action
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CLT in action
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CLT for plug-in estimators

• Setting: 𝘟𝟣, … , 𝘟𝘯 i.i.d. with quantity of interest 𝜃 = 𝔼[𝘨(𝘟𝘪 )]

• Let 𝘝𝜃 = 𝕍[𝘨(𝘟𝘪 )] = 𝔼[(𝘨(𝘟𝘪 ) − 𝜃)𝟤].

• Analogy/plug-in estimator: ̂𝜃𝘯 = 𝟣
𝘯 ∑𝘯

𝘪=𝟣 𝘨(𝘟𝘪 )

• By the CLT, if 𝔼[𝘨(𝘟𝘪 )𝟤] < ∞ then

√𝘯 ( ̂𝜃𝘯 − 𝜃) 𝘥→ 𝒩(𝟢, 𝘝𝜃)

• Any estimator that has this property is called asymptotically normal

• 𝘝𝜃 is the variance of this centered/scaled version of the estimator.

• The approximate variance of the estimator itself will be 𝕍[ ̂𝜃𝘯] 𝘢= 𝘝𝜃/𝘯
• The approximate standard error will be se[ ̂𝜃𝘯] = √𝘝𝜃/𝘯
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Why is asymptotic normality important?

• An estimator ̂𝜃𝘯 for 𝜃 is asymptotically normal when
√𝘯 ( ̂𝜃𝘯 − 𝜃) 𝘥→ 𝒩(𝟢, 𝘝𝜃)

• Allows us to approximate the probability of ̂𝜃𝘯 being far away from 𝜃 in
large samples.

• Warning: you do not know if you sample is big enough for this to be a
good approximation.
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Transformations

• Continuous mapping theorem: for continuous 𝘨 , we have

𝘡𝘯
𝘥→ 𝘡 ⟹ 𝘨(𝘡𝘯) 𝘥→ 𝘨(𝘡).

• Let 𝘟𝟣, 𝘟𝟤, … converge in distribution to some r.v. 𝘟

• Let 𝘠𝟣, 𝘠𝟤, … converge in probability to some number, 𝘤

• Slutsky’s Theorem gives the following result:

1. 𝘟𝘯𝘠𝘯 converges in distribution to 𝘤𝘟
2. 𝘟𝘯 + 𝘠𝘯 converges in distribution to 𝘟 + 𝘤
3. 𝘟𝘯/𝘠𝘯 converges in distribution to 𝘟/𝘤 if 𝘤 ≠ 𝟢

• Extremely useful when trying to figure out what the large-sample
distribution of an estimator is.
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Variance estimation with plug-in estimators

• Plug-in CLT:

√𝘯 ( ̂𝜃𝘯 − 𝜃) 𝘥→ 𝒩(𝟢, 𝘝𝜃), 𝘝𝜃 = 𝔼[(𝘨(𝘟𝘪 ) − 𝜃)𝟤]

• But we don’t know 𝘝𝜃?! Estimate it!

𝘝𝜃 = 𝟣
𝘯

𝘯
∑
𝘪=𝟣

(𝘨(𝘟𝘪 ) − ̂𝜃𝘯)
𝟤

• We can show that 𝘝𝜃
𝘱

→ 𝘝𝜃 and so by Slutsky:

√𝘯 ( ̂𝜃𝘯 − 𝜃)
√𝘝𝜃

𝘥→ 𝒩(𝟢, 𝘝𝜃)
√𝘝𝜃

∼ 𝒩(𝟢, 𝟣)
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Multivariate CLT
• Convergence in distribution is the same vector 𝗭𝘯: convergence of
c.d.f.s

• Allow us to generalize the CLT to random vectors:

Multivariate Central Limit Theorem
If 𝗫𝘪 ∈ ℝ𝘬 are i.i.d. and 𝔼‖𝗫𝘪‖𝟤 < ∞, then as 𝘯 → ∞,

√𝘯 (𝗫𝘯 − 𝝁) 𝘥→ 𝒩(𝟢, 𝚺),

where 𝝁 = 𝔼[𝗫𝘪 ] and 𝚺 = 𝕍[𝗫𝘪 ] = 𝔼 [(𝗫𝘪 − 𝝁)(𝗫𝘪 − 𝝁)′].

• 𝔼‖𝗫𝘪‖𝟤 < ∞ is equivalent to 𝔼[𝘟 𝟤
𝘪,𝘫 ] < ∞ for all 𝘫 = 𝟣, … , 𝘬 .

• Basically: multivariate CLT holds if each r.v. in the vector has finite
variance.

• Very common for when we’re estimating multiple parameters 𝜽 with ̂𝜽𝘯
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3/ Confidence intervals



Interval estimation - what and why?

• ̂𝜃𝘯 is our best guess about 𝜃

• But ℙ( ̂𝜃𝘯 = 𝜃) = 𝟢!

• Alternative: produce a range of plausible values instead of one number.

• Hopefully will increase the chance that we’ve captured the truth.

• We can use the distribution of estimators (CLT!!) to derive these
intervals.
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What is a confidence interval?
Definition
A 𝟣 − 𝛼 confidence interval for a population parameter 𝜃 is a pair of statistics
𝘓 = 𝘓(𝘟𝟣, … , 𝘟𝘯) and 𝘜 = 𝘜(𝘟𝟣, … , 𝘟𝘯) such that 𝘓 < 𝘜 and such that

ℙ(𝘓 ≤ 𝜃 ≤ 𝘜) = 𝟣 − 𝛼, ∀𝜃

• Random interval (𝘓, 𝘜) will contain the truth 𝟣 − 𝛼 of the time.

• ℙ(𝘓 ≤ 𝜃 ≤ 𝘜) is the coverage probability of the CI

• Extremely useful way to represent our uncertainty about our estimate.

• Shows a range of plausible values given the data.

• A sequence of CIs, [𝘓𝘯, 𝘜𝘯] are asymptotically valid if the coverage
probability converges to correct level:

lim
𝘯→∞

ℙ(𝘓𝘯 ≤ 𝜃 ≤ 𝘜𝘯) = 𝟣 − 𝛼
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ℙ(𝘓 ≤ 𝜃 ≤ 𝘜) = 𝟣 − 𝛼, ∀𝜃

• Random interval (𝘓, 𝘜) will contain the truth 𝟣 − 𝛼 of the time.
• ℙ(𝘓 ≤ 𝜃 ≤ 𝘜) is the coverage probability of the CI

• Extremely useful way to represent our uncertainty about our estimate.

• Shows a range of plausible values given the data.

• A sequence of CIs, [𝘓𝘯, 𝘜𝘯] are asymptotically valid if the coverage
probability converges to correct level:

lim
𝘯→∞

ℙ(𝘓𝘯 ≤ 𝜃 ≤ 𝘜𝘯) = 𝟣 − 𝛼
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• We can derive such CIs when our estimators are asymptotically normal:

̂𝜃𝘯 − 𝜃
ŝe( ̂𝜃𝘯)

𝘥→ 𝒩(𝟢, 𝟣)

• Then as 𝘯 → ∞

ℙ (−𝟣.𝟫𝟨 ≤
̂𝜃𝘯 − 𝜃
ŝe( ̂𝜃)

≤ 𝟣.𝟫𝟨) → 𝟢.𝟫𝟧
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Deriving the 95% CI

ℙ (−𝟣.𝟫𝟨 ≤
̂𝜃𝘯 − 𝜃
ŝe( ̂𝜃𝘯)

≤ 𝟣.𝟫𝟨) → 𝟢.𝟫𝟧

ℙ (−𝟣.𝟫𝟨 ⋅ ŝe( ̂𝜃𝘯) ≤ ̂𝜃𝘯 − 𝜃 ≤ 𝟣.𝟫𝟨 ⋅ ŝe( ̂𝜃𝘯)) → 𝟢.𝟫𝟧
ℙ (− ̂𝜃𝘯 − 𝟣.𝟫𝟨 ⋅ ŝe( ̂𝜃𝘯) ≤ −𝜃 ≤ − ̂𝜃𝘯 + 𝟣.𝟫𝟨 ⋅ ŝe( ̂𝜃𝘯)) → 𝟢.𝟫𝟧

ℙ ( ̂𝜃𝘯 − 𝟣.𝟫𝟨 ⋅ ŝe( ̂𝜃𝘯) ≤ 𝜃 ≤ ̂𝜃𝘯 + 𝟣.𝟫𝟨 ⋅ ŝe( ̂𝜃𝘯)) → 𝟢.𝟫𝟧

• Lower bound: ̂𝜃𝘯 − 𝟣.𝟫𝟨 ⋅ se( ̂𝜃𝘯)

• Upper bound: ̂𝜃𝘯 + 𝟣.𝟫𝟨 ⋅ se( ̂𝜃𝘯)
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ℙ (−𝟣.𝟫𝟨 ⋅ ŝe( ̂𝜃𝘯) ≤ ̂𝜃𝘯 − 𝜃 ≤ 𝟣.𝟫𝟨 ⋅ ŝe( ̂𝜃𝘯)) → 𝟢.𝟫𝟧
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Finding the critical values
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ℙ (−𝘻𝟣−𝛼/𝟤 ≤
̂𝜃𝘯 − 𝜃
ŝe( ̂𝜃𝘯)

≤ 𝘻𝟣−𝛼/𝟤) → 𝟣−𝛼 ⟹ (𝟣−𝛼) CI: ̂𝜃𝘯 ±𝘻𝟣−𝛼/𝟤 ⋅ ŝe( ̂𝜃𝘯)

• How do we figure out what 𝘻𝟣−𝛼/𝟤 will be?

• Intuitively, we want the 𝘻 values that puts 𝛼/𝟤 in each of the tails.

• Because normal is symmetric, we have 𝘻𝛼/𝟤 = −𝘻𝟣−𝛼/𝟤
• Use the quantile function: 𝘻𝟣−𝛼/𝟤 = Φ−𝟣(𝟣 − 𝛼/𝟤) (qnorm in R)
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• How do we figure out what 𝘻𝟣−𝛼/𝟤 will be?

• Intuitively, we want the 𝘻 values that puts 𝛼/𝟤 in each of the tails.

• Because normal is symmetric, we have 𝘻𝛼/𝟤 = −𝘻𝟣−𝛼/𝟤
• Use the quantile function: 𝘻𝟣−𝛼/𝟤 = Φ−𝟣(𝟣 − 𝛼/𝟤) (qnorm in R)

42 / 55



CI for social pressure effect

neigh_var <- var(social$voted[social$treatment == "Neighbors"])
neigh_n <- 38201
civic_var <- var(social$voted[social$treatment == "Civic Duty"])
civic_n <- 38218

se_diff <- sqrt(neigh_var/neigh_n + civic_var/civic_n)

## c(lower, upper)
c((0.378 - 0.315) - 1.96 * se_diff, (0.378 - 0.315) + 1.96 * se_diff)

## [1] 0.0563 0.0697
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Interpreting the confidence interval

• Caution: a common incorrect interpretation of a confidence interval:

• “I calculated a 95% confidence interval of [0.05,0.13], which means that
there is a 95% chance that the true difference in means in is that
interval.”

• This is WRONG.

• The true value of the population mean, 𝜇, is fixed.

• It is either in the interval or it isn’t—there’s no room for probability at all.

• The randomness is in the interval: 𝘟 𝘯 ± 𝟣.𝟫𝟨𝘚𝘯/√𝘯.

• Correct interpretation: across 95% of random samples, the constructed
confidence interval will contain the true value.
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Confidence interval simulation
• Draw samples of size 500 (pretty big) from 𝒩(𝟣, 𝟣𝟢)

• Calculate confidence intervals for the sample mean:

𝘟 𝘯 ± 𝟣.𝟫𝟨 × ŝe[𝘟 𝘯]⇝ 𝘟 𝘯 ± 𝟣.𝟫𝟨 × 𝘚𝘯/√𝘯

sims<- 10000
cover <- rep(0, times = sims)
low.bound <- up.bound <- rep(NA, times = sims)
for(i in 1:sims){

draws <- rnorm(500, mean = 1, sd = sqrt(10))
low.bound[i] <- mean(draws) - sd(draws) / sqrt(500) * 1.96
up.bound[i] <- mean(draws) + sd(draws) / sqrt(500) * 1.96
if (low.bound[i] < 1 & up.bound[i] > 1) {

cover[i] <- 1
}

}
mean(cover)

## [1] 0.95
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𝘟 𝘯 ± 𝟣.𝟫𝟨 × ŝe[𝘟 𝘯]⇝ 𝘟 𝘯 ± 𝟣.𝟫𝟨 × 𝘚𝘯/√𝘯

sims<- 10000
cover <- rep(0, times = sims)
low.bound <- up.bound <- rep(NA, times = sims)
for(i in 1:sims){

draws <- rnorm(500, mean = 1, sd = sqrt(10))
low.bound[i] <- mean(draws) - sd(draws) / sqrt(500) * 1.96
up.bound[i] <- mean(draws) + sd(draws) / sqrt(500) * 1.96
if (low.bound[i] < 1 & up.bound[i] > 1) {

cover[i] <- 1
}

}
mean(cover)

## [1] 0.95

45 / 55



Confidence interval simulation
• Draw samples of size 500 (pretty big) from 𝒩(𝟣, 𝟣𝟢)

• Calculate confidence intervals for the sample mean:
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Plotting the CIs
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Question

• Question What happens to the size of the confidence interval when we
increase our confidence, from say 95% to 99%? Do confidence intervals
get wider or shorter?

• Answer Wider!

• Decreases 𝛼

⇝ increases 𝟣 − 𝛼/𝟤⇝ increases 𝘻𝛼/𝟤
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4/ Delta method



Delta method

Delta method
If

√𝘯 ( ̂𝜃𝘯 − 𝜃) 𝘥→ 𝒩(𝟢, 𝘝𝜃) and 𝘩(𝘶) is continuously differentiable in a
neighborhood around 𝜃, then as 𝘯 → ∞,

√𝘯 (𝘩( ̂𝜃𝘯) − 𝘩(𝜃)) 𝘥→ 𝒩(𝟢, (𝘩′(𝜃))𝟤𝘝𝜃).

• Why 𝘩() continuously differentiable?

• Near 𝜃 we can approximate 𝘩() with a line where 𝘩′ is the slope.
• So 𝘩( ̂𝜃𝘯) − 𝘩(𝜃) ≈ 𝘩′(𝜃) ( ̂𝜃𝘯 − 𝜃)

• Examples:

•
√𝘯(𝘟 𝟤

𝘯 − 𝜇𝟤) 𝘥→ 𝒩(𝟢, (𝟤𝜇)𝟤𝜎 𝟤)
•

√𝘯(log(𝘟 𝘯) − log(𝜇)) 𝘥→ 𝒩(𝟢, 𝜎 𝟤/𝜇𝟤)
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Multivariate Delta Method

• What if we want to know the asymptotic distribution of a function of ̂𝜽𝘯?

• Let 𝗵(𝜽) map from ℝ𝘬 → ℝ𝘮 and be continuously differentiable.

• Ex: 𝗵(𝜃𝟣, 𝜃𝟤, 𝜃𝟥) = (𝜃𝟤/𝜃𝟣, 𝜃𝟥/𝜃𝟣), from ℝ𝟥 → ℝ𝟤

• Like univariate case, we need the derivatives arranged in 𝘮 × 𝘬 Jacobian
matrix:

𝗛(𝜽) = 𝛁𝜽𝗵(𝜽) =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝜕𝘩𝟣
𝜕𝜃𝟣

𝜕𝘩𝟣
𝜕𝜃𝟤

⋯ 𝜕𝘩𝟣
𝜕𝜃𝘬𝜕𝘩𝟤

𝜕𝜃𝟣

𝜕𝘩𝟤
𝜕𝜃𝟤

⋯ 𝜕𝘩𝟤
𝜕𝜃𝘬

⋮ ⋮ ⋱ ⋮
𝜕𝘩𝘮
𝜕𝜃𝟣

𝜕𝘩𝘮
𝜕𝜃𝟤

⋯ 𝜕𝘩𝘮
𝜕𝜃𝘬

⎞⎟⎟⎟⎟⎟⎟
⎠

• Multivariate delta method: if
√𝘯 ( ̂𝜽𝘯 − 𝜽) 𝘥→ 𝒩(𝟢, 𝚺), then

√𝘯 (𝗵( ̂𝜽𝘯) − 𝗵(𝜽)) 𝘥→ 𝒩(𝟢, 𝗛(𝜽)𝚺𝗛(𝜽)′)
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Stochastic order notation

• When working with asymptotics, it’s often useful to have some
shorthand.

• Order notation for deterministic sequences:

• If 𝘢𝘯 → 𝟢, then we write 𝘢𝘯 = 𝘰(𝟣) (“little-oh-one”)
• If 𝘯−𝜆𝘢𝘯 → 𝟢, we write 𝘢𝘯 = 𝘰(𝘯𝜆)
• If 𝘢𝘯 is bounded, we write 𝘢𝘯 = 𝘖(𝟣) (“big-oh-one”)
• If 𝘯−𝜆𝘢𝘯 is bounded, we write 𝘢𝘯 = 𝘖(𝘯𝜆)

• Stochastic order notation for random sequence, 𝘡𝘯

• If 𝘡𝘯
𝘱

→ 𝟢, we write 𝘡𝘯 = 𝘰𝘱(𝟣) (“little-oh-p-one”).
• For any consistent estimator, we have ̂𝜃𝘯 = 𝜃 + 𝘰𝘱(𝟣)
• If 𝘢−𝟣

𝘯 𝘡𝘯
𝘱
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Bounded in probability

Definition
A random sequence 𝘡𝘯 is bounded in probability, written 𝘡𝘯 = 𝘖𝘱(𝟣)
(“big-oh-p-one”) for all 𝛿 > 𝟢 there exists a 𝘔𝛿 and 𝘯𝛿 , such that for 𝘯 ≥ 𝘯𝛿 ,

ℙ(|𝘡𝘯| > 𝘔𝛿) < 𝛿

• 𝘡𝘯 = 𝘰𝘱(𝟣) implies 𝘡𝘯 = 𝘖𝘱(𝟣) but not the reverse.

• If 𝘡𝘯 converges in distribution, it is 𝘖𝘱(𝟣), so if the CLT applies we have:
√𝘯( ̂𝜃𝘯 − 𝜃) = 𝘖𝘱(𝟣)

• If 𝘢−𝟣
𝘯 𝘡𝘯 = 𝘖𝘱(𝟣), we write 𝘡𝘯 = 𝘖𝘱(𝘢𝘯), so we have: ̂𝜃𝘯 = 𝜃 + 𝘖𝘱(𝘯−𝟣/𝟤).
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