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Where are we? Where are we going?

• Last few weeks: probability, learning how to think about r.v.s

• Now: how to estimate features of underlying distributions with data.

• How do we construct estimators? What are their properties?
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1/ Point Estimation



Motivating example

• Gerber, Green, and Larimer (APSR, 2008)
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Motivating Example

load("../assets/gerber_green_larimer.RData")
## turn turnout variable into a numeric
social$voted <- 1 * (social$voted == "Yes")
neigh.mean <- mean(social$voted[social$treatment == "Neighbors"])
neigh.mean

## [1] 0.378

contr.mean <- mean(social$voted[social$treatment == "Civic Duty"])
contr.mean

## [1] 0.315
neigh.mean - contr.mean

## [1] 0.0634

• Is this a “real”? Is it big?
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Why study estimators?

• Goal 1: Inference

• What is our best guess about some quantity of interest?
• What are a set of plausible values of the quantity of interest?

• Goal 2: Compare estimators

• In an experiment, use simple difference in sample means (𝘠 − 𝘟 )?

• Or the post-stratification estimator, where we estimate the estimate the
difference among two subsets of the data (male and female, for
instance) and then take the weighted average of the two (𝘡 is the share
of women):

(𝘠 𝘧 − 𝘟 𝘧 )𝘡 + (𝘠 𝘮 − 𝘟𝘮)(𝟣 − 𝘡)

• Which (if either) is better? How would we know?
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Samples from the population

• Model-based inferece: random vectors 𝘟𝟣, … , 𝘟𝘯 are i.i.d. draws from
c.d.f. 𝘍

• e.g.: 𝘟𝘪 = 𝟣 if citizen 𝘪 votes, 𝘟𝘪 = 𝟢 otherwise.
• 𝘯 is the sample size
• i.i.d. can be justified through random sampling from an inifinite
population.

• 𝘍 is often called the population distribution or just population
• Model-based because we are assuming the probability model 𝘍

• Two metaphors:

• Actual/potential population of size 𝘕 >> 𝘯 and we randomly sample 𝘯.
• 𝘍 represents the data generating process, we repeat 𝘯 times

• Statistical inference or learning is using data to infer 𝘍 .
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Point estimation

• Goal of inference: learn about the features of the population.

• Parameter: 𝜃 is any function of the population distribution 𝘍

• Also called: quantities of interest, estimands.

• Examples of parameters:

• 𝜇 = 𝔼[𝘟𝘪 ]: the mean (turnout rate in the population).
• 𝜎 𝟤 = 𝕍[𝘟𝘪 ]: the variance.
• 𝜇𝘺 − 𝜇𝘹 = 𝔼[𝘠𝘪 ] − 𝔼[𝘟𝘪 ]: the difference in mean turnout between two
groups.

• Point estimation: providing a single “best guess” about these
parameters.
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Estimators

• A statistic is any function of the sample {𝘟𝟣, … , 𝘟𝘯}.

• Before we see the data, statistics are random and have distributions, etc.
• After we see the data, statistic is realized and we see the specific value.

Definition
An estimator ̂𝜃𝘯 for some parameter 𝜃, is a statistic intended as a guess
about 𝜃.

• ̂𝜃𝘯 is a r.v. because it is a function of r.v.s.

• ⇝ ̂𝜃𝘯 has a distribution.

• An estimate is one particular realization of the estimator

• Why is the following statement wrong: “My estimate was the sample
mean and my estimator was 0.38”?
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Examples of Estimators

• For the population expectation, 𝔼[𝘟𝘪 ], many possible estimators:

• ̂𝜃𝘯 = 𝘟 𝘯 the sample mean
• ̂𝜃𝘯 = 𝘟𝟣 just use the first observation
• ̂𝜃𝘯 = max(𝘟𝟣, … , 𝘟𝘯)
• ̂𝜃𝘯 = 𝟥 always guess 3
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The three distributions

• Population Distribution: the data-generating process

• Bernoulli in the case of the social pressure/voter turnout example)

• Empirical distribution: 𝘟𝟣, … , 𝘟𝘯

• series of 1s and 0s in the sample

• Sampling distribution: distribution of the estimator over repeated
samples from the population distribution

• the 0.38 sample mean in the “Neighbors” group is one draw from this
distribution
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Sampling distribution, in pictures
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Sampling distribution

## now we take the mean of one sample, which is
## one draw from the **sampling distribution**
my.samp <- rbinom(n = 10, size = 1, prob = 0.4)
mean(my.samp)

## [1] 0.4

## let's take another draw from the population dist
my.samp.2 <- rbinom(n = 10, size = 1, prob = 0.4)

## Let's feed this sample to the sample mean estimator
## to get another estimate, which is another draw from
## the sampling distribution
mean(my.samp.2)

## [1] 0.5
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Sampling distribution by simulation

• Let’s generate 10,000 draws from the sampling distribution of the
sample mean here when 𝘯 = 𝟣𝟢𝟢.

nsims <- 10000
mean.holder <- rep(NA, times = nsims)
for (i in 1:nsims) {

my.samp <- rbinom(n = 100, size = 1, prob = 0.4)
mean.holder[i] <- mean(my.samp) ## sample mean
first.holder[i] <- my.samp[1] ## first obs

}
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Sampling distribution versus population
distribution
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Question The sampling distribution refers to the distribution of 𝜃, true or
false.

15 / 25



Where do estimators come from?

• Parametric modeling: assume 𝘟𝟣, … , 𝘟𝘯
i.i.d.∼ 𝘍 and specify what family 𝘍

is from.

• Example: 𝘍 is Pois(𝜆).
• Construct estimator ̂𝜆 using maximum likelihood
• Downside: inferences are model dependent

• Nonparametric inference: make minimal assumptions on 𝘍 .

• Plug-in/analogy principle: replace 𝘍 with the empirical distribution.

• Empirical distribution: probability 𝟣/𝘯 at each observed value of 𝘟𝘪 :

𝘍𝘯(𝘹) = ∑𝘯
𝘪=𝟣 𝕀(𝘟𝘪 ≤ 𝘹)

𝘯

• ⇝ if 𝜃 = 𝔼[𝘨(𝘟)] replace 𝔼 sample means: ̂𝜃 = 𝟣
𝘯 ∑𝘯

𝘪=𝟣 𝘨(𝘟𝘪 )
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Plug-in estimators, examples

• Expectation:

𝜇 = 𝔼[𝘟𝘪 ]⇝ ̂𝜇 = 𝟣
𝘯

𝘯
∑
𝘪=𝟣

𝘟𝘪 = 𝘟 𝘯

• Variance:

𝜎 𝟤 = 𝔼[(𝘟𝘪 − 𝔼[𝘟𝘪 ])𝟤]⇝ 𝜎 𝟤 = 𝟣
𝘯

𝘯
∑
𝘪=𝟣

(𝘟𝘪 − 𝘟 𝘯)𝟤

• Covariance:

𝜎𝘹𝘺 = Cov[𝘟𝘪 , 𝘠𝘪 ] = 𝔼[(𝘟𝘪−𝔼[𝘟𝘪 ])(𝘠𝘪−𝔼[𝘠𝘪 ])]⇝ 𝜎𝘹𝘺 = 𝟣
𝘯

𝘯
∑
𝘪=𝟣

(𝘟𝘪−𝘟)(𝘠𝘪−𝘠 )
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2/ Finite-Sample
Properties of Estimators



Properties of estimators

• We only get one draw from the sampling distribution, ̂𝜃𝘯.

• Want to use estimators whose distribution is “close” to the true value.

• There are two ways we evaluate estimators:

• Finite sample: the properties of its sampling distribution for a fixed
sample size 𝘯.

• Large sample: the properties of the sampling distribution as we let
𝘯 → ∞.
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Bias

• The bias of estimator ̂𝜃 for parameter 𝜃 is

bias[ ̂𝜃] = 𝔼[ ̂𝜃] − 𝜃.

• An estimator is unbiased if bias[ ̂𝜃] = 𝟢.

• Sample mean of i.i.d. 𝘟𝟣, … , 𝘟𝘯 with 𝔼[𝘟𝘪 ] = 𝜇

𝔼 [𝘟 𝘯] = 𝟣
𝘯

𝘯
∑
𝘪=𝟣

𝔼[𝘟𝘪 ] = 𝟣
𝘯

𝘯
∑
𝘪=𝟣

𝜇 = 𝜇

• Thus, 𝘟 𝘯 is unbiased for 𝜇 if 𝔼[|𝘟 |] < ∞

• What about a weighted average?

• Unbiasedness is preserved under linear transformations.
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Estimation variance

• Sampling variance: the variance of an estimator 𝕍[ ̂𝜃].

• Measure of how spread the estimator it is around its mean.

• Sampling variance of the sample mean:

𝕍 [𝘟 𝘯] = 𝟣
𝘯𝟤

𝘯
∑
𝘪=𝟣

𝕍[𝘟𝘪 ] = 𝟣
𝘯𝟤

𝘯
∑
𝘪=𝟣

𝜎 𝟤 = 𝜎 𝟤

𝘯

• Standard error: standard deviation of the estimator se( ̂𝜃) = √𝕍[ ̂𝜃]

• Like all SDs, nice that it’s on the same scale.

• Standard error of the sample mean: 𝜎/√𝘯
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Mean squared error

• Mean squared error or MSE is

MSE = 𝔼[( ̂𝜃𝘯 − 𝜃)𝟤]

• The MSE assesses the quality of an estimator.

• How big are (squared) deviations from the true parameter?
• Ideally, this would be as low as possible!

• Useful decomposition result:

MSE = bias[ ̂𝜃𝘯]𝟤 + 𝕍[ ̂𝜃𝘯]

• ⇝ for unbiased estimators, MSE is the sampling variance.

• Might accept some bias for large reductions in variance for lower
overall MSE.
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3/ Design-based inference



Survey sampling
• Up to now: focus on model-based inference.

• 𝘟𝟣, … , 𝘟𝘯 are iid draws from an infinite population modeled by cdf 𝘍

• Alternative: a large, but finite sample of size 𝘕 indexed 𝘪 = 𝟣, … , 𝘕 .

• Population characteristics: 𝘹𝟣, 𝘹𝟤, … , 𝘹𝘕 (list of fixed numbers)

• We’ll think of the population and everything about it as fixed

• Assumption: simple random sample (eg, with replacement) of size 𝘯
from this population

• Number of possible samples: (𝘕
𝘯)

• Sampling inclusion indicators: 𝘐𝟣, 𝘐𝟤, … , 𝘐𝘕
• These are random because of the random sampling (uppercase!)
• Total sample size is fixed: ∑𝘕

𝘪=𝟣 𝘐𝘪 = 𝘯
• Inclusion probabilities: 𝜋 = ℙ(𝘐𝘪 = 𝟣) = 𝘯/𝘕

• Different sampling designs lead to different inclusion probabilities and
difference inferences.
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Estimands and estimators
• Estimand: population mean 𝘹 = 𝟣

𝘕 ∑𝘕
𝘪=𝟣 𝘹𝘪

• Fixed quantity because the population is fixed and finite.
• But we don’t observe all 𝘹𝘪 , so we cannot calculate it.

• Estimator: sample mean 𝘟 𝘯 = 𝟣
𝘯 ∑𝘕

𝘪=𝟣 𝘐𝘪𝘹𝘪

• This estimator is random because the sample is random.

• Design-based inference: randomness comes from sampling alone and
depends on sampling design.

• Unbiasedness proof is illustrative:

𝔼[𝘟 𝘯] = 𝔼 [ 𝟣
𝘯

𝘕
∑
𝘪=𝟣

𝘐𝘪𝘹𝘪] = 𝟣
𝘯

𝘕
∑
𝘪=𝟣

𝔼[𝘐𝘪 ]𝘹𝘪 = 𝟣
𝘯

𝘕
∑
𝘪=𝟣

𝘯
𝘕 𝘹𝘪 = 𝟣

𝘕
𝘕

∑
𝘪=𝟣

𝘹𝘪 = 𝘹

• Remember: unbiased across repeated samples from the sampling
design.
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Variance of the sample mean
• Variance of 𝘟 𝘯 across repeated samples:

𝕍[𝘟 𝘯] = (𝟣 − 𝘯
𝘕 )⏟⏟⏟⏟⏟

finite pop. correction

𝘴𝟤

𝘯

• 𝘴𝟤 is the population variance of 𝘹𝘪 (a fixed quantity!!):

𝘴𝟤 = 𝟣
𝘕 − 𝟣

𝘕
∑
𝘪=𝟣

(𝘹𝘪 − 𝘹)𝟤

• We can still apply the plug-in principle and use the sample variance 𝘚𝟤

�̂�[𝘟 𝘯] = (𝟣 − 𝘯
𝘕 ) 𝘚𝟤

𝘯 𝘚𝟤 = 𝟣
𝘯 − 𝟣

𝘕
∑
𝘪=𝟣

𝘐𝘪 (𝘹𝘪 − 𝘟 𝘯)𝟤

• We can show that this is unbiased so that 𝔼[�̂�[𝘟 𝘯]] = 𝕍[𝘟 𝘯]
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Inverse probability weighting
• More often, we have unequal sampling probabilities: 𝜋𝘪 = ℙ(𝘐𝘪 = 𝟣) for
each 𝘪

• Typically to oversample groups that are difficult to reach
• Or to ensure sufficient sample sizes for smaller minority groups

• Horvitz-Thompson estimator:

𝘟𝘏𝘛 = 𝟣
𝘕

𝘕
∑
𝘪=𝟣

𝘐𝘪𝘹𝘪
𝜋𝘪

• The HT estimator is unbiased: 𝔼[𝘟𝘏𝘛 ] = 𝘹
• But be very unstable and high variance if a low 𝜋𝘪 actually gets sampled

• Alternative: Hajek estimator (also known as the IPW estimator)

𝘟𝘪𝘱𝘸 = ∑𝘕
𝘪=𝟣 𝘐𝘪𝘹𝘪/𝜋𝘪

∑𝘕
𝘪=𝟣 𝘐𝘪/𝜋𝘪

• Normalizes by the sum of weights.
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