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Where are we? Where are we going?

• Covered most aspects of multivariate distributions.

• Time to preview a feature of these distributions we’ll care a lot about:
conditional expectations.

• At its core: how the average of one variable varies with others.
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Defining condition expectations

Definition
The conditional expectation of 𝘠 conditional on 𝗫 = 𝘅 is:

𝜇(𝘅) = 𝔼[𝘠 ∣ 𝗫 = 𝘅] =
⎧{
⎨{⎩

∑𝘺 𝘺 ℙ(𝘠 = 𝘺 ∣ 𝗫 = 𝘅) discrete 𝘠
∫∞
−∞ 𝘺 𝘧𝘠 ∣𝗫(𝘺 ∣ 𝘅)𝘥𝘺 continuous 𝘠

• Expected value of the conditional distribution of 𝘠 given 𝗫 = 𝘅.

• 𝗫 = (𝘟𝟣, 𝘟𝟤, … , 𝘟𝘬) is a random vector (𝘬 = 𝟣 just an r.v.)

• Viewed as a function of 𝘅, it is the conditional expectation function
(CEF)

• How does the average value of 𝘠 change given different levels of 𝗫?
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Conditional expectation example

Support Gay Oppose Gay
Marriage Marriage

𝘠 = 𝟣 𝘠 = 𝟢
Female 𝘟 = 𝟣 0.32 0.19
Male 𝘟 = 𝟢 0.29 0.20

• Conditional expectation of gay marriage support 𝘠 among men 𝘟 = 𝟢?

𝔼[𝘠 ∣ 𝘟 = 𝟢] = ∑
𝘺

𝘺 ℙ(𝘠 = 𝘺 ∣ 𝘟 = 𝟢)

= 𝟢 × ℙ(𝘠 = 𝟢 ∣ 𝘟 = 𝟢) + 𝟣 × ℙ(𝘠 = 𝟣 ∣ 𝘟 = 𝟢)

= 𝟣 × 𝟢.𝟤𝟫
𝟢.𝟤𝟫 + 𝟢.𝟤𝟢 = 𝟢.𝟧𝟫

• If 𝘠 is binary, then 𝔼[𝘠 ∣ 𝘟 = 𝘹] = ℙ(𝘠 = 𝟣 ∣ 𝘟 = 𝘹)
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CEF for binary covariates

• Example:

• 𝘠𝘪 is the time respondent 𝘪 waited in line to vote.
• 𝘟𝘪 = 𝟣 for whites, 𝘟𝘪 = 𝟢 for non-whites.

• Then the mean in each group is just a conditional expectation:

𝜇(white) = 𝘌[𝘠𝘪 |𝘟𝘪 = white]
𝜇(non-white) = 𝘌[𝘠𝘪 |𝘟𝘪 = non-white]
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Why is the CEF useful?

0 10 20 30 40 50 60

Voting Wait Time

Whites

Non-whites

μ(1) μ(0)

• The CEF encodes relationships between variables.

• If 𝜇(white) < 𝜇(non-white), so that waiting times for whites are shorter
on average than for non-whites.

• Indicates a relationship in the population between race and wait times.
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CEF for discrete covariates
• New covariate: 𝘟𝘪 is the # of polling booths at citizen 𝘪 ’s polling station.

• 𝜇(𝘹) is the mean of 𝘠𝘪 changes as 𝘟𝘪 changes:

0 5 10 15

Voting Wait Time

5 Booths

μ(5)

10 Booths

μ(10)

15 Booths

μ(15)

20 Booths

μ(20)
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CEF with multiple covariates

• We can also CEF conditioning on multiple variables 𝜇(𝘅):

𝜇(white,man) = 𝔼[𝘠𝘪 |𝘟𝘪 = white, 𝘡𝘪 = man]
𝜇(white,woman) = 𝔼[𝘠𝘪 |𝘟𝘪 = white, 𝘡𝘪 = woman]

𝜇(non-white,man) = 𝔼[𝘠𝘪 |𝘟𝘪 = non-white, 𝘡𝘪 = man]
𝜇(non-white,woman) = 𝔼[𝘠𝘪 |𝘟𝘪 = non-white, 𝘡𝘪 = woman]

• Why? Allows more credible all else equal comparisons (ceteris paribus).

• Ex: average difference in wait times between white and non-white
citizens of the same gender:

𝜇(white,man) − 𝜇(non-white,man)
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CEF for continuous covariates

• What if our independent variable, 𝘟𝘪 is income?

• Many possible values of 𝘟𝘪 ⇝ many possible values of 𝔼[𝘠𝘪 |𝘟𝘪 = 𝘹].

• Writing out each value of the CEF no longer feasible.

• Now we will think about 𝜇(𝘹) = 𝔼[𝘠𝘪 |𝘟𝘪 = 𝘹] as function. What does this
function look like:

• Linear: 𝜇(𝘹) = 𝛼 + 𝛽𝘹
• Quadratic: 𝜇(𝘹) = 𝛼 + 𝛽𝘹 + 𝛾𝘹𝟤

• Crazy, nonlinear: 𝜇(𝘹) = 𝛼/(𝛽 + 𝘹)

• These are unknown functions in the population! This is going to make
producing an estimator ̂𝜇(𝘹) very difficult!
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Conditional expectations as random variables

• The conditional expectation is a function of 𝘅: 𝜇(𝘅) = 𝔼[𝘠 ∣ 𝗫 = 𝘅].

• Not random: for a particular 𝘅, 𝜇(𝘅) is a number.
• Conditional expectation given an event.

• What about the conditional expectation given an r.v., 𝔼[𝘠 ∣ 𝗫]?

• Why? Best prediction about 𝘠 given we get to know 𝗫.

• Obtained by plugging r.v. into the CEF: 𝔼[𝘠 ∣ 𝘟] = 𝜇(𝘟)

• This is itself a random variable! For binary 𝘟 :

𝔼[𝘠 ∣ 𝘟] =
⎧{
⎨{⎩

𝜇(𝟢) with prob. ℙ(𝘟 = 𝟢)
𝜇(𝟣) with prob. ℙ(𝘟 = 𝟣)

• Has an expectation, 𝔼[𝔼[𝘠 ∣ 𝘟]], and a variance, 𝕍[𝔼[𝘠 ∣ 𝘟]].
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Law of iterated expectations
Simple Law of Iterated Expectations

If 𝔼|𝘠 | < ∞, for any random vector 𝗫, 𝔼 {𝔼[𝘠 ∣ 𝗫]} = 𝘌[𝘠 ].

• Expectation of the conditional expectation is the marginal expectation.

• Discrete version: 𝔼 [𝔼[𝘠 ∣ 𝘟]] = ∑𝘹 𝔼[𝘠 ∣ 𝘟 = 𝘹]ℙ(𝘟 = 𝘹) = 𝔼[𝘠 ]
• Continuous version: 𝔼 [𝔼[𝘠 ∣ 𝘟]] = ∫𝘹 𝔼[𝘠 ∣ 𝘟 = 𝘹]𝘧𝘟 (𝘹)𝘥𝘹 = 𝔼[𝘠 ]

• General version allows for two conditioning sets:

Law of Iterated Expectations

If 𝔼|𝘠 | < ∞, for any random vectors 𝗫𝟣 and 𝗫𝟤,

𝔼 {𝔼[𝘠 ∣ 𝗫𝟣, 𝗫𝟤] ∣ 𝗫𝟣} = 𝘌[𝘠 ∣ 𝗫𝟣].

• “Averaging” over what is not constant (𝗫𝟤).
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If 𝔼|𝘠 | < ∞, for any random vector 𝗫, 𝔼 {𝔼[𝘠 ∣ 𝗫]} = 𝘌[𝘠 ].

• Expectation of the conditional expectation is the marginal expectation.

• Discrete version: 𝔼 [𝔼[𝘠 ∣ 𝘟]] = ∑𝘹 𝔼[𝘠 ∣ 𝘟 = 𝘹]ℙ(𝘟 = 𝘹) = 𝔼[𝘠 ]
• Continuous version: 𝔼 [𝔼[𝘠 ∣ 𝘟]] = ∫𝘹 𝔼[𝘠 ∣ 𝘟 = 𝘹]𝘧𝘟 (𝘹)𝘥𝘹 = 𝔼[𝘠 ]
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Example: law of iterated expectations

Support Gay Oppose Gay
Marriage Marriage Marginal

𝘠 = 𝟣 𝘠 = 𝟢
Female 𝘟 = 𝟣 0.32 0.19 0.51
Male 𝘟 = 𝟢 0.29 0.20 0.49
Marginal 0.61 0.39

• 𝔼[𝘠 ∣ 𝘟 = 𝟣] = 𝟢.𝟨𝟤 and 𝔼[𝘠 ∣ 𝘟 = 𝟢] = 𝟢.𝟧𝟫.

• ℙ(𝘟 = 𝟣) = 𝟢.𝟧𝟣 (females) and ℙ(𝘟 = 𝟢) = 𝟢.𝟦𝟫 (males).

• Plug into the iterated expectations:

𝔼[𝔼[𝘠 ∣ 𝘟]] = 𝔼[𝘠 ∣ 𝘟 = 𝟢]ℙ(𝘟 = 𝟢) + 𝔼[𝘠 ∣ 𝘟 = 𝟣]ℙ(𝘟 = 𝟣)
= 𝟢.𝟧𝟫 × 𝟢.𝟦𝟫 + 𝟢.𝟨𝟤 × 𝟢.𝟧𝟣 = 𝟢.𝟨𝟢𝟧 = 𝔼[𝘠 ]
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Properties of conditional expectations

1. 𝔼[𝘤(𝘟)𝘠 ∣ 𝘟] = 𝘤(𝘟)𝔼[𝘠 ∣ 𝘟] for any function 𝘤(𝘟).

• Example: 𝔼[𝘟 𝟤𝘠 ∣ 𝘟] = 𝘟 𝟤𝔼[𝘠 ∣ 𝘟] (If we know 𝘟 , then we also know 𝘟 𝟤)

2. If 𝘟 and 𝘠 are independent r.v.s, then

𝔼[𝘠 ∣ 𝘟 = 𝘹] = 𝔼[𝘠 ].

3. If 𝘟 ⟂⟂ 𝘠 ∣ 𝘡 , then

𝔼[𝘠 ∣ 𝘟 = 𝘹, 𝘡 = 𝘻] = 𝔼[𝘠 ∣ 𝘡 = 𝘻]

4. Linearity: 𝔼[𝘠 + 𝘟 ∣ 𝘡] = 𝔼[𝘠 ∣ 𝘡 ] + 𝘌[𝘟 ∣ 𝘡 ]
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CEF errors and projection

• CEF error: 𝘦 = 𝘠 − 𝔼[𝘠 ∣ 𝗫]

• Properties of the CEF error:

1. 𝔼[𝘦 ∣ 𝗫] = 𝟢
2. 𝔼[𝘦] = 𝟢
3. If 𝔼[|𝘠 |𝘳 ] < ∞ for 𝘳 ≥ 𝟣, then 𝔼[|𝘦|𝘳 ] < ∞
4. For any function 𝘩(𝗫), 𝘩(𝗫) is uncorrelated with 𝘦: 𝔼[𝘩(𝗫)𝘦] = 𝟢

• Last property: CEF errors are orthogonal to the space of functions of 𝗫.

• 𝔼[𝘠 ∣ 𝗫] is the projection of 𝘠 on the space of all functions of 𝗫.
• Closest point in that space to 𝘠 .

• These properties are definitional, not assumptions.
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Conditional Expectation as Best Predictor

• Suppose we want to predict 𝘠 based on random vector 𝗫.

• We can use any function 𝘨(𝗫) as our predictor.

• Mean squared error of our predictions:

𝔼 [(𝘠 − 𝘨(𝗫))𝟤]

• What function will minimize this error? The CEF, 𝜇(𝘅)!

• If 𝘌[𝘠 𝟤] < ∞, then for any predictor 𝘨(𝗫),

𝔼 [(𝘠 − 𝘨(𝗫))𝟤] ≥ 𝔼 [(𝘠 − 𝜇(𝗫))𝟤]
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Conditional Variance
Definition
The conditional variance of a 𝘠 given 𝗫 = is defined as:

𝜎 𝟤(𝘅) = 𝕍[𝘠 ∣ 𝗫 = 𝘅] = 𝔼 [(𝘠 − 𝜇(𝘅))𝟤 ∣ 𝗫 = 𝘅]

• Spread of the conditional distribution around its expectation.

• By definition, same as the variance of the CEF errors:

𝕍[𝘠 ∣ 𝗫 = 𝘅] = 𝕍[𝘦 ∣ 𝗫 = 𝘅] = 𝔼[𝘦𝟤 ∣ 𝗫 = 𝘅]

• Can re-express in the usual way:

𝕍[𝘠 ∣ 𝗫 = 𝘅] = 𝔼 [𝘠 𝟤 ∣ 𝗫 = 𝘅] − (𝔼[𝘠 ∣ 𝗫 = 𝘅])𝟤
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Skedasticity
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Wait Times

μ($25k)μ($50k)μ($75k)μ($150k)

• The error is homoskedastic if 𝜎 𝟤(𝘅) = 𝜎 𝟤 does not depend on 𝘅.

• Homoskedasticity greatly simplifies math, but often strong and
implausible.

• The error is heteroskedastic if 𝜎 𝟤(𝘅) does depend on 𝘅

• Hetero = different, skedastic = scatter

• Default assumption should be the less restrictive one: heteroskedastic
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Conditional variance as a random variable
• Conditional variance is just a function of 𝘅: 𝜎 𝟤(𝘅) = 𝕍[𝘠 ∣ 𝗫 = 𝘅]

• 𝜎 𝟤(𝗫) = 𝕍[𝘠 ∣ 𝗫] is an r.v. and a function of 𝗫, just like 𝔼[𝘠 ∣ 𝗫].

• With a binary 𝘟 :

𝕍[𝘠 ∣ 𝘟] =
⎧{
⎨{⎩

𝜎 𝟤(𝟢) with prob. ℙ(𝘟 = 𝟢)
𝜎 𝟤(𝟣) with prob. ℙ(𝘟 = 𝟣)

• Theorem (Law of Total Variance/EVE’s law):

𝕍[𝘠 ] = 𝔼[𝕍[𝘠 ∣ 𝗫]] + 𝕍[𝔼[𝘠 ∣ 𝗫]]

• The total variance can be decomposed into:

1. the average of the within group variance (𝔼[𝕍[𝘠 ∣ 𝗫]]) and
2. how much the average varies between groups (𝕍[𝔼[𝘠 ∣ 𝗫]]).

23 / 23



Conditional variance as a random variable
• Conditional variance is just a function of 𝘅: 𝜎 𝟤(𝘅) = 𝕍[𝘠 ∣ 𝗫 = 𝘅]

• 𝜎 𝟤(𝗫) = 𝕍[𝘠 ∣ 𝗫] is an r.v. and a function of 𝗫, just like 𝔼[𝘠 ∣ 𝗫].

• With a binary 𝘟 :

𝕍[𝘠 ∣ 𝘟] =
⎧{
⎨{⎩

𝜎 𝟤(𝟢) with prob. ℙ(𝘟 = 𝟢)
𝜎 𝟤(𝟣) with prob. ℙ(𝘟 = 𝟣)

• Theorem (Law of Total Variance/EVE’s law):

𝕍[𝘠 ] = 𝔼[𝕍[𝘠 ∣ 𝗫]] + 𝕍[𝔼[𝘠 ∣ 𝗫]]

• The total variance can be decomposed into:

1. the average of the within group variance (𝔼[𝕍[𝘠 ∣ 𝗫]]) and
2. how much the average varies between groups (𝕍[𝔼[𝘠 ∣ 𝗫]]).

23 / 23



Conditional variance as a random variable
• Conditional variance is just a function of 𝘅: 𝜎 𝟤(𝘅) = 𝕍[𝘠 ∣ 𝗫 = 𝘅]

• 𝜎 𝟤(𝗫) = 𝕍[𝘠 ∣ 𝗫] is an r.v. and a function of 𝗫, just like 𝔼[𝘠 ∣ 𝗫].

• With a binary 𝘟 :

𝕍[𝘠 ∣ 𝘟] =
⎧{
⎨{⎩

𝜎 𝟤(𝟢) with prob. ℙ(𝘟 = 𝟢)
𝜎 𝟤(𝟣) with prob. ℙ(𝘟 = 𝟣)

• Theorem (Law of Total Variance/EVE’s law):

𝕍[𝘠 ] = 𝔼[𝕍[𝘠 ∣ 𝗫]] + 𝕍[𝔼[𝘠 ∣ 𝗫]]

• The total variance can be decomposed into:

1. the average of the within group variance (𝔼[𝕍[𝘠 ∣ 𝗫]]) and
2. how much the average varies between groups (𝕍[𝔼[𝘠 ∣ 𝗫]]).

23 / 23



Conditional variance as a random variable
• Conditional variance is just a function of 𝘅: 𝜎 𝟤(𝘅) = 𝕍[𝘠 ∣ 𝗫 = 𝘅]

• 𝜎 𝟤(𝗫) = 𝕍[𝘠 ∣ 𝗫] is an r.v. and a function of 𝗫, just like 𝔼[𝘠 ∣ 𝗫].

• With a binary 𝘟 :

𝕍[𝘠 ∣ 𝘟] =
⎧{
⎨{⎩

𝜎 𝟤(𝟢) with prob. ℙ(𝘟 = 𝟢)
𝜎 𝟤(𝟣) with prob. ℙ(𝘟 = 𝟣)

• Theorem (Law of Total Variance/EVE’s law):

𝕍[𝘠 ] = 𝔼[𝕍[𝘠 ∣ 𝗫]] + 𝕍[𝔼[𝘠 ∣ 𝗫]]

• The total variance can be decomposed into:

1. the average of the within group variance (𝔼[𝕍[𝘠 ∣ 𝗫]]) and
2. how much the average varies between groups (𝕍[𝔼[𝘠 ∣ 𝗫]]).

23 / 23



Conditional variance as a random variable
• Conditional variance is just a function of 𝘅: 𝜎 𝟤(𝘅) = 𝕍[𝘠 ∣ 𝗫 = 𝘅]

• 𝜎 𝟤(𝗫) = 𝕍[𝘠 ∣ 𝗫] is an r.v. and a function of 𝗫, just like 𝔼[𝘠 ∣ 𝗫].

• With a binary 𝘟 :

𝕍[𝘠 ∣ 𝘟] =
⎧{
⎨{⎩

𝜎 𝟤(𝟢) with prob. ℙ(𝘟 = 𝟢)
𝜎 𝟤(𝟣) with prob. ℙ(𝘟 = 𝟣)

• Theorem (Law of Total Variance/EVE’s law):

𝕍[𝘠 ] = 𝔼[𝕍[𝘠 ∣ 𝗫]] + 𝕍[𝔼[𝘠 ∣ 𝗫]]

• The total variance can be decomposed into:

1. the average of the within group variance (𝔼[𝕍[𝘠 ∣ 𝗫]]) and
2. how much the average varies between groups (𝕍[𝔼[𝘠 ∣ 𝗫]]).

23 / 23



Conditional variance as a random variable
• Conditional variance is just a function of 𝘅: 𝜎 𝟤(𝘅) = 𝕍[𝘠 ∣ 𝗫 = 𝘅]

• 𝜎 𝟤(𝗫) = 𝕍[𝘠 ∣ 𝗫] is an r.v. and a function of 𝗫, just like 𝔼[𝘠 ∣ 𝗫].

• With a binary 𝘟 :

𝕍[𝘠 ∣ 𝘟] =
⎧{
⎨{⎩

𝜎 𝟤(𝟢) with prob. ℙ(𝘟 = 𝟢)
𝜎 𝟤(𝟣) with prob. ℙ(𝘟 = 𝟣)

• Theorem (Law of Total Variance/EVE’s law):

𝕍[𝘠 ] = 𝔼[𝕍[𝘠 ∣ 𝗫]] + 𝕍[𝔼[𝘠 ∣ 𝗫]]

• The total variance can be decomposed into:

1. the average of the within group variance (𝔼[𝕍[𝘠 ∣ 𝗫]]) and

2. how much the average varies between groups (𝕍[𝔼[𝘠 ∣ 𝗫]]).

23 / 23



Conditional variance as a random variable
• Conditional variance is just a function of 𝘅: 𝜎 𝟤(𝘅) = 𝕍[𝘠 ∣ 𝗫 = 𝘅]

• 𝜎 𝟤(𝗫) = 𝕍[𝘠 ∣ 𝗫] is an r.v. and a function of 𝗫, just like 𝔼[𝘠 ∣ 𝗫].

• With a binary 𝘟 :

𝕍[𝘠 ∣ 𝘟] =
⎧{
⎨{⎩

𝜎 𝟤(𝟢) with prob. ℙ(𝘟 = 𝟢)
𝜎 𝟤(𝟣) with prob. ℙ(𝘟 = 𝟣)

• Theorem (Law of Total Variance/EVE’s law):

𝕍[𝘠 ] = 𝔼[𝕍[𝘠 ∣ 𝗫]] + 𝕍[𝔼[𝘠 ∣ 𝗫]]

• The total variance can be decomposed into:

1. the average of the within group variance (𝔼[𝕍[𝘠 ∣ 𝗫]]) and
2. how much the average varies between groups (𝕍[𝔼[𝘠 ∣ 𝗫]]).

23 / 23


