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Where are we? Where are we going?

+ Covered most aspects of multivariate distributions.

- Time to preview a feature of these distributions we’ll care a lot about:
conditional expectations.

+ At its core: how the average of one variable varies with others.
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>,y P(Y=y|X=x) discrete ¥
f_o;y fyx(y [ x)dy continuous Y

M(X)=[E[Y|X=X]={

+ Expected value of the conditional distribution of Y given X = x.

« X = (X, X, ..., X,) is a random vector (k = 1 just an r.v.)

+ Viewed as a function of x, it is the conditional expectation function
(CEF)

- How does the average value of Y change given different levels of X?
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Conditional expectation example

Support Gay Oppose Gay

Marriage Marriage

Y=1 Y=0

Female X =1 0.32 019
Male X =0 0.29 0.20

- Conditional expectation of gay marriage support Y among men X = 0?
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Conditional expectation example

Support Gay Oppose Gay

Marriage Marriage

Y=1 Y=0

Female X =1 0.32 019
Male X =0 0.29 0.20

- Conditional expectation of gay marriage support Y among men X = 0?

E[Y [ X=0/=) yP(Y=y|X=0)
y
=0xP(Y=0|X=0)+1xP(Y=1|X=0)
0.29
o B
0.29 +0.20

=0.59
« If Yisbinary, then E[Y | X =x] =P(Y =1| X =x)
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CEF for binary covariates

+ Example:

+ Y, is the time respondent / waited in line to vote.
+ X, =1 for whites, X; = 0 for non-whites.

+ Then the mean in each group is just a conditional expectation:

u(white) = E[Y;|X; = white]
u(non-white) = E[Y;|X; = non-white]
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Why is the CEF useful?

Non-whites

Whites

I T T T T T 1
(1) (0)
0 10 20 " 30 40 50 60

Voting Wait Time

+ The CEF encodes relationships between variables.
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Why is the CEF useful?

Non-whites
Whites

lJ(1) T IJ(O) T T 1
0 10 20 30 40

50 60
Voting Wait Time

+ The CEF encodes relationships between variables.

- If u(white) < u(non-white), so that waiting times for whites are shorter
on average than for non-whites.

+ Indicates a relationship in the population between race and wait times.
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CEF for discrete covariates

« New covariate: X; is the # of polling booths at citizen i’s polling station.
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CEF for discrete covariates

« New covariate: X; is the # of polling booths at citizen i’s polling station.
+ u(x) is the mean of Y; changes as X; changes:

20 Booths

’—jBOOthS\

(') u(20) ;u(s) 1'0 1'5

Voting Wait Time
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CEF with multiple covariates

- We can also CEF conditioning on multiple variables u(x):
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CEF with multiple covariates

- We can also CEF conditioning on multiple variables u(x):

u(white, man) = E[Y;|X; = white, Z, = man]
u(white, woman) = E[Y;|X; = white, Z; = woman]
u(non-white, man) = E[Y;|X; = non-white, Z; = man]|
u(non-white,woman) = E[Y;|X; = non-white, Z; = woman]

+ Why? Allows more credible all else equal comparisons (ceteris paribus).

+ Ex: average difference in wait times between white and non-white
citizens of the same gender:

u(white, man) — u(non-white, man)
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CEF for continuous covariates

+ What if our independent variable, X; is income?
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CEF for continuous covariates

+ What if our independent variable, X; is income?
+ Many possible values of X; ~~ many possible values of E[Y;|X; = x].
+ Writing out each value of the CEF no longer feasible.

« Now we will think about u(x) = E[Y;|X; = x| as function. What does this
function look like:

+ Linear: u(x) = o + Bx
+ Quadratic: y(x) = o + Bx + yx>
+ Crazy, nonlinear: u(x) = a/(B + x)

+ These are unknown functions in the population! This is going to make
producing an estimator f(x) very difficult!
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Conditional expectations as random variables

+ The conditional expectation is a function of x: u(x) = E[Y | X = x].
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Conditional expectations as random variables

+ The conditional expectation is a function of x: u(x) = E[Y | X = x].

+ Not random: for a particular x, u(x) is a number.
- Conditional expectation given an event.

- What about the conditional expectation given an rv.,, E[Y | X]?

« Why? Best prediction about Y given we get to know X.
- Obtained by plugging r.v. into the CEF: E[Y | X] = u(X)

- This is itself a random variable! For binary X:

E[Y | X] = {H(O) W?th prob. P(X = 0)
u(1)  with prob. P(X = 1)

- Has an expectation, E[E[Y | X]], and a variance, V[E[Y | X]].
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Law of iterated expectations

Simple Law of Iterated Expectations

If E| Y| < oo, for any random vector X, E{E[Y | X]} = E[Y].

+ Expectation of the conditional expectation is the marginal expectation.
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Law of iterated expectations

Simple Law of Iterated Expectations

If E| Y| < oo, for any random vector X, E{E[Y | X]} = E[Y].

+ Expectation of the conditional expectation is the marginal expectation.

+ Discrete version: E[E[Y | X]] =Y E[Y | X = x]P(X = x) = E[Y]
+ Continuous version: E[E[Y | X]] = [ E[Y | X = x]fx(x)dx = E[Y]

+ General version allows for two conditioning sets:

Law of Iterated Expectations

If E|Y| < oo, for any random vectors X; and X,,

[E{[E[Y | XlaXQ] | Xl} = E[Y | X1]~

- “Averaging” over what is not constant (X,).
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Example: law of iterated expectations

Support Gay Oppose Gay
Marriage Marriage | Marginal
Y=1 Y=0
Female X =1 0.32 019 0.51
Male X =0 0.29 0.20 0.49
Marginal 0.61 0.39

- E[Y | X =1]=0.62and E[Y | X = 0] = 0.50.
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Example: law of iterated expectations

Support Gay Oppose Gay
Marriage Marriage | Marginal
Y=1 Y=0
Female X =1 0.32 019 0.51
Male X =0 0.29 0.20 0.49
Marginal 0.61 0.39

- E[Y | X =1] =0.62and E[Y | X = 0] = 0.50.
+ P(X =1) = 0.51 (females) and P(X = 0) = 0.49 (males).

+ Plug into the iterated expectations:

E[E[Y | X]] = E[Y | X = 0]P(X = 0) + E[Y | X = 1]P(X = 1)
= 0.59 x 0.49 + 0.62 x 0.51 = 0.605 = E[Y]
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Properties of conditional expectations

1. Elc(X)Y | X] = c(X)E[Y | X] for any function c(X).
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Properties of conditional expectations

1. Elc(X)Y | X] = c(X)E[Y | X] for any function c(X).
+ Example: E[X2Y | X] = X2E[Y | X] (If we know X, then we also know X?2)

2. If X and Y are independent r.v.s, then

E[Y | X = x] = E[Y].

3. If X 1L Y| Z, then

ElY | X=x,Z=2z]=E[Y | Z=Z¢]

4 Linearity: E[Y + X | Z] = E[Y | Z] + E[X | Z]
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« CEFerror: e=Y —E[Y | X]
+ Properties of the CEF error:

1. Ele|X]=0
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3. IfE[]Y]"] < oo for r > 1, then E[|e]"] < oo
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+ Properties of the CEF error:
Ele| X] =0

Ele] =0

If E[|Y|"] < oo for r > 1, then E[|e|"] < oo
For any function h(X), h(X) is uncorrelated with e: E[h(X)e] =0

g Y =

« Last property: CEF errors are orthogonal to the space of functions of X.

+ E[Y | X] is the projection of Y on the space of all functions of X.

19/23



CEF errors and projection

« CEFerror: e=Y —E[Y | X]
+ Properties of the CEF error:
Ele| X] =0

Ele] =0

If E[|Y|"] < oo for r > 1, then E[|e|"] < oo
For any function h(X), h(X) is uncorrelated with e: E[h(X)e] =0

g Y =

- Last property: CEF errors are orthogonal to the space of functions of X.

+ E[Y | X] is the projection of Y on the space of all functions of X.
+ Closest point in that space to Y.

19/23



CEF errors and projection

« CEFerror: e=Y —E[Y | X]
+ Properties of the CEF error:

Efe|X] =0

Ele] =0

If E[|Y|"] < oo for r > 1, then E[|e|"] < oo

For any function h(X), h(X) is uncorrelated with e: E[h(X)e] =0

g Y =

- Last property: CEF errors are orthogonal to the space of functions of X.

+ E[Y | X] is the projection of Y on the space of all functions of X.
+ Closest point in that space to Y.

+ These properties are definitional, not assumptions.
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Conditional Expectation as Best Predictor

+ Suppose we want to predict Y based on random vector X.

+ We can use any function g(X) as our predictor.

+ Mean squared error of our predictions:
E[(Y—g(X)]

+ What function will minimize this error? The CEF, u(x)!

« If E[Y?] < oo, then for any predictor g(X),

E[(Y —(X)’] > E[(Y —u(X))’]

20/23



Conditional Variance

Definition

The conditional variance of a Y given X = is defined as:

o2(x) = VY | X =x = E[(Y — p(x))? | X = x]

21/23



Conditional Variance

Definition
The conditional variance of a Y given X = is defined as:

o2(x) = VY | X =x = E[(Y — p(x))? | X = x]

- Spread of the conditional distribution around its expectation.

21/23



Conditional Variance

Definition

The conditional variance of a Y given X = is defined as:

o2(x) = VY | X =x = E[(Y — p(x))? | X = x]

- Spread of the conditional distribution around its expectation.

+ By definition, same as the variance of the CEF errors:

VY | X=x] =V[e | X =x] = E[e? | X = ¥]

21/23



Conditional Variance

Definition

The conditional variance of a Y given X = is defined as:

o2(x) = VY | X =x = E[(Y — p(x))? | X = x]

- Spread of the conditional distribution around its expectation.

+ By definition, same as the variance of the CEF errors:

VY | X=x] =V[e | X =x] = E[e? | X = ¥]

- Can re-express in the usual way:

VIY [ X=x] =E[Y?| X =x] — (E[Y | X =x])?
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+ The error is homoskedastic if o(x) = o? does not depend on x.

- Homoskedasticity greatly simplifies math, but often strong and
implausible.

+ The error is heteroskedastic if o(x) does depend on x

+ Hetero = different, skedastic = scatter

+ Default assumption should be the less restrictive one: heteroskedastic
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- Conditional variance is just a function of x: o?(x) = V[Y | X = x|
« 0%(X) = V[Y | X]is an rv. and a function of X, just like E[Y | X].
« With a binary X:

VY | X] = o2(0) with prob. P(X = 0)
~ | o2(1) with prob. P(X = 1)

- Theorem (Law of Total Variance/EVE’s law):
VY] = E[V[Y | X]] + V[E[Y | X]]

+ The total variance can be decomposed into:

1. the average of the within group variance (E[V[Y | X]]) and
2. how much the average varies between groups (V[E[Y | X]]).
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