7. Conditional Expectation

Fall 2023

Matthew Blackwell

Gov 2002 (Harvard)

Where are we? Where are we going?

• Covered most aspects of multivariate distributions.

Where are we? Where are we going?

- Covered most aspects of multivariate distributions.
- Time to preview a feature of these distributions we'll care a lot about: conditional expectations.

Where are we? Where are we going?

- Covered most aspects of multivariate distributions.
- Time to preview a feature of these distributions we'll care a lot about: conditional expectations.
- At its core: how the average of one variable varies with others.

Definition

The **conditional expectation** of Y conditional on $X = x$ is:

$$
\mu(\mathbf{x}) = \mathbb{E}[Y \mid \mathbf{X} = \mathbf{x}] = \begin{cases} \sum_{y} y \mathbb{P}(Y = y \mid \mathbf{X} = \mathbf{x}) & \text{discrete } Y \\ \int_{-\infty}^{\infty} y f_{Y|\mathbf{X}}(y \mid \mathbf{x}) dy & \text{continuous } Y \end{cases}
$$

Definition

The **conditional expectation** of Y conditional on $X = x$ is:

$$
\mu(\mathbf{x}) = \mathbb{E}[Y | \mathbf{X} = \mathbf{x}] = \begin{cases} \sum_{y} y \mathbb{P}(Y = y | \mathbf{X} = \mathbf{x}) & \text{discrete } Y \\ \int_{-\infty}^{\infty} y f_{Y|X}(y | \mathbf{x}) dy & \text{continuous } Y \end{cases}
$$

• Expected value of the conditional distribution of Y given $X = x$.

Definition

The **conditional expectation** of Y conditional on $X = x$ is:

$$
\mu(\mathbf{x}) = \mathbb{E}[Y | \mathbf{X} = \mathbf{x}] = \begin{cases} \sum_{y} y \mathbb{P}(Y = y | \mathbf{X} = \mathbf{x}) & \text{discrete } Y \\ \int_{-\infty}^{\infty} y f_{Y|X}(y | \mathbf{x}) dy & \text{continuous } Y \end{cases}
$$

- Expected value of the conditional distribution of Y given $X = x$.
	- $\boldsymbol{\cdot} \;\; \boldsymbol{\mathsf{X}} = (X_1, X_2, \ldots, X_k)$ is a random vector ($k=1$ just an r.v.)

Definition

The **conditional expectation** of Y conditional on $X = x$ is:

$$
\mu(\mathbf{x}) = \mathbb{E}[Y | \mathbf{X} = \mathbf{x}] = \begin{cases} \sum_{y} y \mathbb{P}(Y = y | \mathbf{X} = \mathbf{x}) & \text{discrete } Y \\ \int_{-\infty}^{\infty} y f_{Y|X}(y | \mathbf{x}) dy & \text{continuous } Y \end{cases}
$$

• Expected value of the conditional distribution of Y given $X = x$.

•
$$
X = (X_1, X_2, \dots, X_k)
$$
 is a random vector $(k = 1)$ just an r.v.)

• Viewed as a function of x, it is the **conditional expectation function (CEF)**

Definition

The **conditional expectation** of Y conditional on $X = x$ is:

$$
\mu(\mathbf{x}) = \mathbb{E}[Y | \mathbf{X} = \mathbf{x}] = \begin{cases} \sum_{y} y \mathbb{P}(Y = y | \mathbf{X} = \mathbf{x}) & \text{discrete } Y \\ \int_{-\infty}^{\infty} y f_{Y|X}(y | \mathbf{x}) dy & \text{continuous } Y \end{cases}
$$

• Expected value of the conditional distribution of Y given $X = x$.

•
$$
\mathbf{X} = (X_1, X_2, \dots, X_k)
$$
 is a random vector (*k* = 1 just an r.v.)

- Viewed as a function of x, it is the **conditional expectation function (CEF)**
	- How does the average value of Y change given different levels of X ?

$$
\mathbb{E}[Y \mid X = 0] = \sum_{y} y \mathbb{P}(Y = y \mid X = 0)
$$

$$
\mathbb{E}[Y | X = 0] = \sum_{y} y \mathbb{P}(Y = y | X = 0)
$$

= 0 \times \mathbb{P}(Y = 0 | X = 0) + 1 \times \mathbb{P}(Y = 1 | X = 0)

$$
\mathbb{E}[Y | X = 0] = \sum_{y} y \mathbb{P}(Y = y | X = 0)
$$

= 0 \times \mathbb{P}(Y = 0 | X = 0) + 1 \times \mathbb{P}(Y = 1 | X = 0)
= 1 \times \frac{0.29}{0.29 + 0.20}

$$
\mathbb{E}[Y | X = 0] = \sum_{y} y \mathbb{P}(Y = y | X = 0)
$$

= 0 \times \mathbb{P}(Y = 0 | X = 0) + 1 \times \mathbb{P}(Y = 1 | X = 0)
= 1 \times \frac{0.29}{0.29 + 0.20} = 0.59

• Conditional expectation of gay marriage support Y among men $X = 0$?

$$
\mathbb{E}[Y | X = 0] = \sum_{y} y \mathbb{P}(Y = y | X = 0)
$$

= 0 \times \mathbb{P}(Y = 0 | X = 0) + 1 \times \mathbb{P}(Y = 1 | X = 0)
= 1 \times \frac{0.29}{0.29 + 0.20} = 0.59

• If Y is binary, then $\mathbb{E}[Y | X = x] = \mathbb{P}(Y = 1 | X = x)$

• Example:

- Example:
	- Y_i is the time respondent *i* waited in line to vote.
- Example:
	- Y_i is the time respondent *i* waited in line to vote.
	- $X_i = 1$ for whites, $X_i = 0$ for non-whites.
- Example:
	- Y_i is the time respondent *i* waited in line to vote.
	- $X_i = 1$ for whites, $X_i = 0$ for non-whites.
- Then the mean in each group is just a conditional expectation:

 $\mu(\textsf{white}) = E[Y_i | X_i = \textsf{white}]$ $\mu(\text{non-white}) = E[Y_i | X_i = \text{non-white}]$

Why is the CEF useful?

• The CEF encodes relationships between variables.

Why is the CEF useful?

- The CEF encodes relationships between variables.
- If μ (white) $< \mu$ (non-white), so that waiting times for whites are shorter on average than for non-whites.

Why is the CEF useful?

- The CEF encodes relationships between variables.
- If μ (white) $\lt \mu$ (non-white), so that waiting times for whites are shorter on average than for non-whites.
- Indicates a relationship **in the population** between race and wait times.

CEF for discrete covariates

• New covariate: $X_{\!\scriptscriptstyle\! i}$ is the # of polling booths at citizen i 's polling station.

CEF for discrete covariates

- New covariate: $X_{\!\scriptscriptstyle\! i}$ is the # of polling booths at citizen i 's polling station.
- $\mu(x)$ is the mean of Y_i changes as X_i changes:

CEF for discrete covariates

- New covariate: $X_{\!\scriptscriptstyle\! i}$ is the # of polling booths at citizen i 's polling station.
- $\mu(x)$ is the mean of Y_i changes as X_i changes:

• We can also CEF conditioning on multiple variables $\mu(\mathbf{x})$:

• We can also CEF conditioning on multiple variables $\mu(\mathbf{x})$:

 $\mu(\textsf{white}, \textsf{man}) = \mathbb{E}[Y_i | X_i = \textsf{white}, Z_i = \textsf{man}]$

• We can also CEF conditioning on multiple variables $\mu(\mathbf{x})$:

 $\mu(\textsf{white}, \textsf{man}) = \mathbb{E}[Y_i | X_i = \textsf{white}, Z_i = \textsf{man}]$ $\mu(\textsf{white}, \textsf{woman}) = \mathbb{E}[Y_i | X_i = \textsf{white}, Z_i = \textsf{woman}]$

• We can also CEF conditioning on multiple variables $\mu(\mathbf{x})$:

 $\mu(\textsf{white}, \textsf{man}) = \mathbb{E}[Y_i | X_i = \textsf{white}, Z_i = \textsf{man}]$ $\mu(\textsf{white}, \textsf{woman}) = \mathbb{E}[Y_i | X_i = \textsf{white}, Z_i = \textsf{woman}]$ $\mu(\mathsf{non\text{-}white}, \mathsf{man}) = \mathbb{E}[Y_i | X_i = \mathsf{non\text{-}white}, Z_i = \mathsf{man}]$

• We can also CEF conditioning on multiple variables $\mu(\mathbf{x})$:

 $\mu(\textsf{white}, \textsf{man}) = \mathbb{E}[Y_i | X_i = \textsf{white}, Z_i = \textsf{man}]$ $\mu(\textsf{white}, \textsf{woman}) = \mathbb{E}[Y_i | X_i = \textsf{white}, Z_i = \textsf{woman}]$ $\mu(\mathsf{non\text{-}white}, \mathsf{man}) = \mathbb{E}[Y_i | X_i = \mathsf{non\text{-}white}, Z_i = \mathsf{man}]$ $\mu(\mathsf{non\text{-}white}, \mathsf{woman}) = \mathbb{E}[Y_i | X_i = \mathsf{non\text{-}white}, Z_i = \mathsf{woman}]$

• We can also CEF conditioning on multiple variables $\mu(\mathbf{x})$:

 $\mu(\textsf{white}, \textsf{man}) = \mathbb{E}[Y_i | X_i = \textsf{white}, Z_i = \textsf{man}]$ $\mu(\textsf{white}, \textsf{woman}) = \mathbb{E}[Y_i | X_i = \textsf{white}, Z_i = \textsf{woman}]$ $\mu(\mathsf{non\text{-}white}, \mathsf{man}) = \mathbb{E}[Y_i | X_i = \mathsf{non\text{-}white}, Z_i = \mathsf{man}]$ $\mu(\mathsf{non\text{-}white}, \mathsf{woman}) = \mathbb{E}[Y_i | X_i = \mathsf{non\text{-}white}, Z_i = \mathsf{woman}]$

• Why? Allows more credible **all else equal** comparisons (ceteris paribus).

• We can also CEF conditioning on multiple variables $u(x)$:

 $\mu(\textsf{white}, \textsf{man}) = \mathbb{E}[Y_i | X_i = \textsf{white}, Z_i = \textsf{man}]$ $\mu(\textsf{white}, \textsf{woman}) = \mathbb{E}[Y_i | X_i = \textsf{white}, Z_i = \textsf{woman}]$ $\mu(\mathsf{non\text{-}white}, \mathsf{man}) = \mathbb{E}[Y_i | X_i = \mathsf{non\text{-}white}, Z_i = \mathsf{man}]$ $\mu(\mathsf{non\text{-}white}, \mathsf{woman}) = \mathbb{E}[Y_i | X_i = \mathsf{non\text{-}white}, Z_i = \mathsf{woman}]$

- Why? Allows more credible **all else equal** comparisons (ceteris paribus).
- Ex: average difference in wait times between white and non-white citizens **of the same gender**:

 μ (white, man) – μ (non-white, man)

• What if our independent variable, $X_{\!\scriptscriptstyle\! i}$ is income?

- What if our independent variable, $X_{\!\scriptscriptstyle\! i}$ is income?
- $\bullet~$ Many possible values of $X_{\!\scriptscriptstyle I} \leadsto$ many possible values of $\mathbb{E}[Y_{\scriptscriptstyle I}|X_{\scriptscriptstyle I}=x].$

- What if our independent variable, $X_{\!\scriptscriptstyle\! i}$ is income?
- $\bullet~$ Many possible values of $X_{\!\scriptscriptstyle I} \leadsto$ many possible values of $\mathbb{E}[Y_{\scriptscriptstyle I}|X_{\scriptscriptstyle I}=x].$
	- Writing out each value of the CEF no longer feasible.

- What if our independent variable, $X_{\!\scriptscriptstyle\! i}$ is income?
- $\bullet~$ Many possible values of $X_{\!\scriptscriptstyle I} \leadsto$ many possible values of $\mathbb{E}[Y_{\scriptscriptstyle I}|X_{\scriptscriptstyle I}=x].$
	- Writing out each value of the CEF no longer feasible.
- Now we will think about $\mu(x) = \mathbb{E}[Y_i | X_i = x]$ as function. What does this function look like:
- What if our independent variable, $X_{\!\scriptscriptstyle\! i}$ is income?
- $\bullet~$ Many possible values of $X_{\!\scriptscriptstyle I} \leadsto$ many possible values of $\mathbb{E}[Y_{\scriptscriptstyle I}|X_{\scriptscriptstyle I}=x].$
	- Writing out each value of the CEF no longer feasible.
- Now we will think about $\mu(x) = \mathbb{E}[Y_i | X_i = x]$ as function. What does this function look like:
	- Linear: $\mu(x) = \alpha + \beta x$

- What if our independent variable, $X_{\!\scriptscriptstyle\! i}$ is income?
- $\bullet~$ Many possible values of $X_{\!\scriptscriptstyle I} \leadsto$ many possible values of $\mathbb{E}[Y_{\scriptscriptstyle I}|X_{\scriptscriptstyle I}=x].$
	- Writing out each value of the CEF no longer feasible.
- Now we will think about $\mu(x) = \mathbb{E}[Y_i | X_i = x]$ as function. What does this function look like:
	- Linear: $\mu(x) = \alpha + \beta x$
	- Quadratic: $\mu(x) = \alpha + \beta x + \gamma x^2$

- What if our independent variable, $X_{\!\scriptscriptstyle\! i}$ is income?
- $\bullet~$ Many possible values of $X_{\!\scriptscriptstyle I} \leadsto$ many possible values of $\mathbb{E}[Y_{\scriptscriptstyle I}|X_{\scriptscriptstyle I}=x].$
	- Writing out each value of the CEF no longer feasible.
- Now we will think about $\mu(x) = \mathbb{E}[Y_i | X_i = x]$ as function. What does this function look like:
	- Linear: $\mu(x) = \alpha + \beta x$
	- Quadratic: $\mu(x) = \alpha + \beta x + \gamma x^2$
	- Crazy, nonlinear: $\mu(x) = \alpha/(\beta + x)$

- What if our independent variable, $X_{\!\scriptscriptstyle\! i}$ is income?
- $\bullet~$ Many possible values of $X_{\!\scriptscriptstyle I} \leadsto$ many possible values of $\mathbb{E}[Y_{\scriptscriptstyle I}|X_{\scriptscriptstyle I}=x].$
	- Writing out each value of the CEF no longer feasible.
- Now we will think about $\mu(x) = \mathbb{E}[Y_i | X_i = x]$ as function. What does this function look like:
	- Linear: $\mu(x) = \alpha + \beta x$
	- Quadratic: $\mu(x) = \alpha + \beta x + \gamma x^2$
	- Crazy, nonlinear: $\mu(x) = \alpha/(\beta + x)$
- These are **unknown functions in the population**! This is going to make producing an estimator $\hat{\mu}(x)$ very difficult!

• The conditional expectation is a function of $x: \mu(x) = \mathbb{E}[Y | X = x].$

- The conditional expectation is a function of \mathbf{x} : $\mu(\mathbf{x}) = \mathbb{E}[Y | \mathbf{X} = \mathbf{x}].$
	- Not random: for a particular $x, \mu(x)$ is a number.

- The conditional expectation is a function of \mathbf{x} : $\mu(\mathbf{x}) = \mathbb{E}[Y | \mathbf{X} = \mathbf{x}].$
	- Not random: for a particular $x, \mu(x)$ is a number.
	- Conditional expectation given an event.

- The conditional expectation is a function of $x: \mu(x) = \mathbb{E}[Y | X = x].$
	- Not random: for a particular $x, \mu(x)$ is a number.
	- Conditional expectation given an event.
- What about the conditional expectation given an r.v., $\mathbb{E}[Y | X]$?

- The conditional expectation is a function of $x: \mu(x) = \mathbb{E}[Y | X = x].$
	- Not random: for a particular $x, \mu(x)$ is a number.
	- Conditional expectation given an event.
- What about the conditional expectation given an r.v., $\mathbb{E}[Y | X]$?
	- Why? Best prediction about Y given we get to know X .

- The conditional expectation is a function of $x: \mu(x) = \mathbb{E}[Y | X = x].$
	- Not random: for a particular $x, \mu(x)$ is a number.
	- Conditional expectation given an event.
- What about the conditional expectation given an r.v., $\mathbb{E}[Y | X]$?
	- Why? Best prediction about Y given we get to know X .
- Obtained by plugging r.v. into the CEF: $\mathbb{E}[Y | X] = \mu(X)$

- The conditional expectation is a function of $x: \mu(x) = \mathbb{E}[Y | X = x].$
	- Not random: for a particular $x, \mu(x)$ is a number.
	- Conditional expectation given an event.
- What about the conditional expectation given an r.v., $\mathbb{E}[Y | X]$?
	- Why? Best prediction about Y given we get to know X .
- Obtained by plugging r.v. into the CEF: $\mathbb{E}[Y | X] = \mu(X)$
- \cdot This is itself a random variable! For binary X:

$$
\mathbb{E}[Y | X] = \begin{cases} \mu(0) & \text{with prob. } \mathbb{P}(X = 0) \\ \mu(1) & \text{with prob. } \mathbb{P}(X = 1) \end{cases}
$$

- The conditional expectation is a function of $x: \mu(x) = \mathbb{E}[Y | X = x].$
	- Not random: for a particular $x, \mu(x)$ is a number.
	- Conditional expectation given an event.
- What about the conditional expectation given an r.v., $\mathbb{E}[Y | X]$?
	- Why? Best prediction about Y given we get to know X .
- Obtained by plugging r.v. into the CEF: $\mathbb{E}[Y | X] = \mu(X)$
- \cdot This is itself a random variable! For binary X:

$$
\mathbb{E}[Y | X] = \begin{cases} \mu(0) & \text{with prob. } \mathbb{P}(X = 0) \\ \mu(1) & \text{with prob. } \mathbb{P}(X = 1) \end{cases}
$$

• Has an expectation, $\mathbb{E}[\mathbb{E}[Y | X]]$, and a variance, $\mathbb{V}[\mathbb{E}[Y | X]]$.

Simple Law of Iterated Expectations

If $\mathbb{E}|Y| < \infty$, for any random vector **X**, $\mathbb{E}\{\mathbb{E}|Y | \mathbf{X}|\} = E[Y]$.

• Expectation of the conditional expectation is the marginal expectation.

Simple Law of Iterated Expectations

If $\mathbb{E}|Y| < \infty$, for any random vector **X**, $\mathbb{E}\{\mathbb{E}|Y | \mathbf{X}|\} = E[Y]$.

- Expectation of the conditional expectation is the marginal expectation.
	- Discrete version: $\mathbb{E} \left[\mathbb{E}[Y | X] \right] = \sum_{x} \mathbb{E}[Y | X = x] \mathbb{P}(X = x) = \mathbb{E}[Y]$

Simple Law of Iterated Expectations

If $\mathbb{E}|Y| < \infty$, for any random vector **X**, $\mathbb{E}\{\mathbb{E}|Y | \mathbf{X}]\} = E[Y]$.

- Expectation of the conditional expectation is the marginal expectation.
	- Discrete version: $\mathbb{E} \left[\mathbb{E}[Y | X] \right] = \sum_{x} \mathbb{E}[Y | X = x] \mathbb{P}(X = x) = \mathbb{E}[Y]$
	- Continuous version: $\mathbb{E}\left[\mathbb{E}[Y | X]\right] = \int_{X} \mathbb{E}[Y | X = x] f_X(x) dx = \mathbb{E}[Y]$

Simple Law of Iterated Expectations

If $\mathbb{E}|Y| < \infty$, for any random vector **X**, $\mathbb{E}\{\mathbb{E}|Y | \mathbf{X}|\} = E[Y]$.

- Expectation of the conditional expectation is the marginal expectation.
	- Discrete version: $\mathbb{E} \left[\mathbb{E}[Y | X] \right] = \sum_{x} \mathbb{E}[Y | X = x] \mathbb{P}(X = x) = \mathbb{E}[Y]$
	- Continuous version: $\mathbb{E}\left[\mathbb{E}[Y | X]\right] = \int_{X} \mathbb{E}[Y | X = x] f_X(x) dx = \mathbb{E}[Y]$
- General version allows for two conditioning sets:

Simple Law of Iterated Expectations

If $\mathbb{E}|Y| < \infty$, for any random vector **X**, $\mathbb{E}\{\mathbb{E}|Y | \mathbf{X}|\} = E[Y]$.

- Expectation of the conditional expectation is the marginal expectation.
	- Discrete version: $\mathbb{E} \left[\mathbb{E}[Y | X] \right] = \sum_{x} \mathbb{E}[Y | X = x] \mathbb{P}(X = x) = \mathbb{E}[Y]$
	- Continuous version: $\mathbb{E}\left[\mathbb{E}[Y | X]\right] = \int_{X} \mathbb{E}[Y | X = x] f_X(x) dx = \mathbb{E}[Y]$
- General version allows for two conditioning sets:

Law of Iterated Expectations

If $\mathbb{E} |Y|<\infty$, for any random vectors X_1 and X_2 ,

 $\mathbb{E}\left\{\mathbb{E}[Y \mid \mathbf{X}_1, \mathbf{X}_2] \mid \mathbf{X}_1\right\} = E[Y \mid \mathbf{X}_1].$

Simple Law of Iterated Expectations

If $\mathbb{E}|Y| < \infty$, for any random vector **X**, $\mathbb{E}\{\mathbb{E}|Y | \mathbf{X}|\} = E[Y]$.

- Expectation of the conditional expectation is the marginal expectation.
	- Discrete version: $\mathbb{E} \left[\mathbb{E}[Y | X] \right] = \sum_{x} \mathbb{E}[Y | X = x] \mathbb{P}(X = x) = \mathbb{E}[Y]$
	- Continuous version: $\mathbb{E}\left[\mathbb{E}[Y | X]\right] = \int_{X} \mathbb{E}[Y | X = x] f_X(x) dx = \mathbb{E}[Y]$
- General version allows for two conditioning sets:

Law of Iterated Expectations

If $\mathbb{E} |Y|<\infty$, for any random vectors X_1 and X_2 ,

 $\mathbb{E}\left\{\mathbb{E}[Y \mid \mathbf{X}_1, \mathbf{X}_2] \mid \mathbf{X}_1\right\} = E[Y \mid \mathbf{X}_1].$

• "Averaging" over what is not constant (X_2).

• $\mathbb{E}[Y | X = 1] = 0.62$ and $\mathbb{E}[Y | X = 0] = 0.59$.

• $\mathbb{E}[Y | X = 1] = 0.62$ and $\mathbb{E}[Y | X = 0] = 0.59$.

• $P(X = 1) = 0.51$ (females) and $P(X = 0) = 0.49$ (males).

• $E[Y | X = 1] = 0.62$ and $E[Y | X = 0] = 0.59$.

- $P(X = 1) = 0.51$ (females) and $P(X = 0) = 0.49$ (males).
- Plug into the iterated expectations:

• $\mathbb{E}[Y | X = 1] = 0.62$ and $\mathbb{E}[Y | X = 0] = 0.59$.

- $P(X = 1) = 0.51$ (females) and $P(X = 0) = 0.49$ (males).
- Plug into the iterated expectations:

 $\mathbb{E}[\mathbb{E}[Y | X]] = \mathbb{E}[Y | X = 0] \mathbb{P}(X = 0) + \mathbb{E}[Y | X = 1] \mathbb{P}(X = 1)$

• $\mathbb{E}[Y | X = 1] = 0.62$ and $\mathbb{E}[Y | X = 0] = 0.59$.

- $P(X = 1) = 0.51$ (females) and $P(X = 0) = 0.49$ (males).
- Plug into the iterated expectations:

 $\mathbb{E}[\mathbb{E}[Y | X]] = \mathbb{E}[Y | X = 0] \mathbb{P}(X = 0) + \mathbb{E}[Y | X = 1] \mathbb{P}(X = 1)$ $= 0.59 \times 0.49 + 0.62 \times 0.51$

• $E[Y | X = 1] = 0.62$ and $E[Y | X = 0] = 0.59$.

- $P(X = 1) = 0.51$ (females) and $P(X = 0) = 0.49$ (males).
- Plug into the iterated expectations:

 $\mathbb{E}[\mathbb{E}[Y | X]] = \mathbb{E}[Y | X = 0] \mathbb{P}(X = 0) + \mathbb{E}[Y | X = 1] \mathbb{P}(X = 1)$ $= 0.59 \times 0.49 + 0.62 \times 0.51 = 0.605$

• $E[Y | X = 1] = 0.62$ and $E[Y | X = 0] = 0.59$.

- $P(X = 1) = 0.51$ (females) and $P(X = 0) = 0.49$ (males).
- Plug into the iterated expectations:

$$
\mathbb{E}[\mathbb{E}[Y | X]] = \mathbb{E}[Y | X = 0] \mathbb{P}(X = 0) + \mathbb{E}[Y | X = 1] \mathbb{P}(X = 1)
$$

= 0.59 × 0.49 + 0.62 × 0.51 = 0.605 = $\mathbb{E}[Y]$

1. $\mathbb{E}[c(X)Y | X] = c(X)\mathbb{E}[Y | X]$ for any function $c(X)$.

- 1. $\mathbb{E}[c(X)Y | X] = c(X)\mathbb{E}[Y | X]$ for any function $c(X)$.
	- Example: $\mathbb{E}[X^2Y\mid X]=X^2\mathbb{E}[Y\mid X]$ (If we know $X,$ then we also know $X^2)$

- 1. $\mathbb{E}[c(X)Y | X] = c(X)\mathbb{E}[Y | X]$ for any function $c(X)$.
	- Example: $\mathbb{E}[X^2Y\mid X]=X^2\mathbb{E}[Y\mid X]$ (If we know $X,$ then we also know $X^2)$
- 2. If X and Y are independent r.v.s, then

 $\mathbb{E}[Y \mid X = x] = \mathbb{E}[Y].$

- 1. $\mathbb{E}[c(X)Y | X] = c(X)\mathbb{E}[Y | X]$ for any function $c(X)$.
	- Example: $\mathbb{E}[X^2Y\mid X]=X^2\mathbb{E}[Y\mid X]$ (If we know $X,$ then we also know $X^2)$
- 2. If X and Y are independent r.v.s, then

$$
\mathbb{E}[Y \mid X = x] = \mathbb{E}[Y].
$$

3. If $X \perp\!\!\!\perp Y \mid Z$, then

$$
\mathbb{E}[Y \mid X = x, Z = z] = \mathbb{E}[Y \mid Z = z]
$$

- 1. $\mathbb{E}[c(X)Y | X] = c(X)\mathbb{E}[Y | X]$ for any function $c(X)$.
	- Example: $\mathbb{E}[X^2Y\mid X]=X^2\mathbb{E}[Y\mid X]$ (If we know $X,$ then we also know $X^2)$
- 2. If X and Y are independent r.v.s, then

$$
\mathbb{E}[Y \mid X = x] = \mathbb{E}[Y].
$$

3. If $X \perp\!\!\!\perp Y \mid Z$, then

$$
\mathbb{E}[Y \mid X = x, Z = z] = \mathbb{E}[Y \mid Z = z]
$$

4. Linearity: $\mathbb{E}[Y + X | Z] = \mathbb{E}[Y | Z] + E[X | Z]$

CEF errors and projection

• CEF error: $e = Y - \mathbb{E}[Y | \mathbf{X}]$
- CEF error: $e = Y \mathbb{E}[Y | \mathbf{X}]$
- Properties of the CEF error:

- CEF error: $e = Y \mathbb{E}[Y | \mathbf{X}]$
- Properties of the CEF error:

1. $\mathbb{E}[e \mid \mathbf{X}] = 0$

- CEF error: $e = Y \mathbb{E}[Y | \mathbf{X}]$
- Properties of the CEF error:

1.
$$
\mathbb{E}[e \mid \mathbf{X}] = 0
$$
\n2. $\mathbb{E}[e] = 0$

- CEF error: $e = Y \mathbb{E}[Y | \mathbf{X}]$
- Properties of the CEF error:

\n- 1.
$$
\mathbb{E}[e \mid \mathbf{X}] = 0
$$
\n- 2. $\mathbb{E}[e] = 0$
\n- 3. If $\mathbb{E}[|Y|^r] < \infty$ for $r \geq 1$, then $\mathbb{E}[|e|^r] < \infty$
\n

- CEF error: $e = Y \mathbb{E}[Y | \mathbf{X}]$
- Properties of the CEF error:

1.
$$
\mathbb{E}[e \mid \mathbf{X}] = 0
$$

- 2. $\mathbb{E}[e] = 0$
- 3. If $\mathbb{E}[|Y|^r] < \infty$ for $r \geq 1$, then $\mathbb{E}[|e|^r] < \infty$
- 4. For any function $h(\mathbf{X})$, $h(\mathbf{X})$ is uncorrelated with $e: \mathbb{E}[h(\mathbf{X})e] = 0$

- CEF error: $e = Y \mathbb{E}[Y | \mathbf{X}]$
- Properties of the CEF error:
	- 1. $\mathbb{E}[e \mid \mathbf{X}] = 0$
	- 2. $\mathbb{E}[e] = 0$
	- 3. If $\mathbb{E}[|Y|^r] < \infty$ for $r \geq 1$, then $\mathbb{E}[|e|^r] < \infty$
	- 4. For any function $h(\mathbf{X})$, $h(\mathbf{X})$ is uncorrelated with $e: \mathbb{E}[h(\mathbf{X})e] = 0$
- Last property: CEF errors are **orthogonal** to the space of functions of **X**.

- CEF error: $e = Y \mathbb{E}[Y | \mathbf{X}]$
- Properties of the CEF error:
	- 1. $\mathbb{E}[e \mid \mathbf{X}] = 0$
	- 2. $\mathbb{E}[e] = 0$
	- 3. If $\mathbb{E}[|Y|^r] < \infty$ for $r \geq 1$, then $\mathbb{E}[|e|^r] < \infty$
	- 4. For any function $h(\mathbf{X})$, $h(\mathbf{X})$ is uncorrelated with $e: \mathbb{E}[h(\mathbf{X})e] = 0$
- Last property: CEF errors are **orthogonal** to the space of functions of **X**.
	- $E[Y | X]$ is the **projection** of Y on the space of all functions of **X**.

- CEF error: $e = Y \mathbb{E}[Y | \mathbf{X}]$
- Properties of the CEF error:
	- 1. $\mathbb{E}[e \mid \mathbf{X}] = 0$
	- 2. $\mathbb{E}[e] = 0$
	- 3. If $\mathbb{E}[|Y|^r] < \infty$ for $r \geq 1$, then $\mathbb{E}[|e|^r] < \infty$
	- 4. For any function $h(\mathbf{X})$, $h(\mathbf{X})$ is uncorrelated with $e: \mathbb{E}[h(\mathbf{X})e] = 0$
- Last property: CEF errors are **orthogonal** to the space of functions of **X**.
	- $E[Y | X]$ is the **projection** of Y on the space of all functions of **X**.
	- \cdot Closest point in that space to Y.

- CEF error: $e = Y \mathbb{E}[Y | \mathbf{X}]$
- Properties of the CEF error:
	- 1. $\mathbb{E}[e \mid \mathbf{X}] = 0$
	- 2. $\mathbb{E}[e] = 0$
	- 3. If $\mathbb{E}[|Y|^r] < \infty$ for $r \geq 1$, then $\mathbb{E}[|e|^r] < \infty$
	- 4. For any function $h(\mathbf{X})$, $h(\mathbf{X})$ is uncorrelated with $e: \mathbb{E}[h(\mathbf{X})e] = 0$
- Last property: CEF errors are **orthogonal** to the space of functions of **X**.
	- $E[Y | X]$ is the **projection** of Y on the space of all functions of **X**.
	- \cdot Closest point in that space to Y.
- These properties are definitional, not assumptions.

• Suppose we want to predict Y based on random vector X .

- Suppose we want to predict Y based on random vector X .
	- We can use any function $g(X)$ as our predictor.

- Suppose we want to predict Y based on random vector X .
	- We can use any function $g(X)$ as our predictor.
- Mean squared error of our predictions:

$$
\mathbb{E}\left[\left(Y-g(\textbf{X})\right)^2\right]
$$

- Suppose we want to predict Y based on random vector X .
	- We can use any function $g(X)$ as our predictor.
- Mean squared error of our predictions:

$$
\mathbb{E}\left[\left(Y-g(\textbf{X})\right)^2\right]
$$

• What function will minimize this error? The CEF, $\mu(\mathbf{x})!$

- Suppose we want to predict Y based on random vector X .
	- We can use any function $g(X)$ as our predictor.
- Mean squared error of our predictions:

$$
\mathbb{E}\left[\left(Y-g(\textbf{X})\right)^2\right]
$$

- What function will minimize this error? The CEF, $\mu(\mathbf{x})!$
- If $E[Y^2]<\infty$, then for any predictor $g(\mathbf{X}),$

$$
\mathbb{E}\left[\left(Y-g(\boldsymbol{X})\right)^2\right] \geq \mathbb{E}\left[\left(Y-\mu(\boldsymbol{X})\right)^2\right]
$$

Definition

The **conditional variance** of a Y given $X =$ is defined as:

$$
\sigma^2(\mathbf{x}) = \mathbb{V}[Y \mid \mathbf{X} = \mathbf{x}] = \mathbb{E}\left[(Y - \mu(\mathbf{x}))^2 \mid \mathbf{X} = \mathbf{x}\right]
$$

Definition

The **conditional variance** of a Y given $X =$ is defined as:

$$
\sigma^2(\mathbf{x}) = \mathbb{V}[Y \mid \mathbf{X} = \mathbf{x}] = \mathbb{E}\left[(Y - \mu(\mathbf{x}))^2 \mid \mathbf{X} = \mathbf{x}\right]
$$

• Spread of the conditional distribution around its expectation.

Definition

The **conditional variance** of a Y given $X =$ is defined as:

$$
\sigma^2(\mathbf{x}) = \mathbb{V}[Y \mid \mathbf{X} = \mathbf{x}] = \mathbb{E}\left[(Y - \mu(\mathbf{x}))^2 \mid \mathbf{X} = \mathbf{x}\right]
$$

- Spread of the conditional distribution around its expectation.
- By definition, same as the variance of the CEF errors:

$$
\mathbb{V}[Y \mid \mathbf{X} = \mathbf{x}] = \mathbb{V}[e \mid \mathbf{X} = \mathbf{x}] = \mathbb{E}[e^2 \mid \mathbf{X} = \mathbf{x}]
$$

Definition

The **conditional variance** of a Y given $X =$ is defined as:

$$
\sigma^2(\mathbf{x}) = \mathbb{V}[Y \mid \mathbf{X} = \mathbf{x}] = \mathbb{E}[(Y - \mu(\mathbf{x}))^2 \mid \mathbf{X} = \mathbf{x}]
$$

- Spread of the conditional distribution around its expectation.
- By definition, same as the variance of the CEF errors:

$$
\mathbb{V}[Y \mid \mathbf{X} = \mathbf{x}] = \mathbb{V}[e \mid \mathbf{X} = \mathbf{x}] = \mathbb{E}[e^2 \mid \mathbf{X} = \mathbf{x}]
$$

• Can re-express in the usual way:

$$
\mathbb{V}[Y \mid \mathbf{X} = \mathbf{x}] = \mathbb{E}[Y^2 \mid \mathbf{X} = \mathbf{x}] - (\mathbb{E}[Y \mid \mathbf{X} = \mathbf{x}])^2
$$

 $\bm{\cdot}$ The error is **homoskedastic** if $\sigma^2(\bm{\mathsf{x}}) = \sigma^2$ does not depend on $\bm{\mathsf{x}}$.

- $\bm{\cdot}$ The error is **homoskedastic** if $\sigma^2(\bm{\mathsf{x}}) = \sigma^2$ does not depend on $\bm{\mathsf{x}}$.
	- Homoskedasticity greatly simplifies math, but often strong and implausible.

- $\bm{\cdot}$ The error is **homoskedastic** if $\sigma^2(\bm{\mathsf{x}}) = \sigma^2$ does not depend on $\bm{\mathsf{x}}$.
	- Homoskedasticity greatly simplifies math, but often strong and implausible.
- $\boldsymbol{\cdot}$ The error is **heteroskedastic** if $\sigma^2(\boldsymbol{\mathsf{x}})$ does depend on $\boldsymbol{\mathsf{x}}$

- $\bm{\cdot}$ The error is **homoskedastic** if $\sigma^2(\bm{\mathsf{x}}) = \sigma^2$ does not depend on $\bm{\mathsf{x}}$.
	- Homoskedasticity greatly simplifies math, but often strong and implausible.
- $\boldsymbol{\cdot}$ The error is **heteroskedastic** if $\sigma^2(\boldsymbol{\mathsf{x}})$ does depend on $\boldsymbol{\mathsf{x}}$
	- Hetero = different, skedastic = scatter

- $\bm{\cdot}$ The error is **homoskedastic** if $\sigma^2(\bm{\mathsf{x}}) = \sigma^2$ does not depend on $\bm{\mathsf{x}}$.
	- Homoskedasticity greatly simplifies math, but often strong and implausible.
- $\boldsymbol{\cdot}$ The error is **heteroskedastic** if $\sigma^2(\boldsymbol{\mathsf{x}})$ does depend on $\boldsymbol{\mathsf{x}}$
	- Hetero = different, skedastic = scatter
- Default assumption should be the less restrictive one: heteroskedastic

• Conditional variance is just a function of **x**: $\sigma^2(\mathsf{x}) = \mathbb{V}[Y \mid \mathsf{X} = \mathsf{x}]$

- Conditional variance is just a function of **x**: $\sigma^2(\mathsf{x}) = \mathbb{V}[Y \mid \mathsf{X} = \mathsf{x}]$
- $\bm{\cdot}\;$ $\sigma^2(\bm{\mathsf{X}}) = \mathbb{V}[Y\mid \bm{\mathsf{X}}]$ is an r.v. and a function of $\bm{\mathsf{X}},$ just like $\mathbb{E}[Y\mid \bm{\mathsf{X}}].$

- Conditional variance is just a function of **x**: $\sigma^2(\mathsf{x}) = \mathbb{V}[Y \mid \mathsf{X} = \mathsf{x}]$
- $\bm{\cdot}\;$ $\sigma^2(\bm{\mathsf{X}}) = \mathbb{V}[Y\mid \bm{\mathsf{X}}]$ is an r.v. and a function of $\bm{\mathsf{X}},$ just like $\mathbb{E}[Y\mid \bm{\mathsf{X}}].$
- \cdot With a binary X:

$$
\mathbb{V}[Y | X] = \begin{cases} \sigma^2(0) & \text{with prob. } \mathbb{P}(X = 0) \\ \sigma^2(1) & \text{with prob. } \mathbb{P}(X = 1) \end{cases}
$$

- Conditional variance is just a function of **x**: $\sigma^2(\mathsf{x}) = \mathbb{V}[Y \mid \mathsf{X} = \mathsf{x}]$
- $\bm{\cdot}\;$ $\sigma^2(\bm{\mathsf{X}}) = \mathbb{V}[Y\mid \bm{\mathsf{X}}]$ is an r.v. and a function of $\bm{\mathsf{X}},$ just like $\mathbb{E}[Y\mid \bm{\mathsf{X}}].$
- \cdot With a binary X:

$$
\mathbb{V}[Y \mid X] = \begin{cases} \sigma^2(0) & \text{with prob. } \mathbb{P}(X = 0) \\ \sigma^2(1) & \text{with prob. } \mathbb{P}(X = 1) \end{cases}
$$

• **Theorem** (Law of Total Variance/EVE's law):

 $[V| Y] = \mathbb{E}[V| Y | X]] + V[\mathbb{E}[Y | X]]$

- Conditional variance is just a function of **x**: $\sigma^2(\mathsf{x}) = \mathbb{V}[Y \mid \mathsf{X} = \mathsf{x}]$
- $\bm{\cdot}\;$ $\sigma^2(\bm{\mathsf{X}}) = \mathbb{V}[Y\mid \bm{\mathsf{X}}]$ is an r.v. and a function of $\bm{\mathsf{X}},$ just like $\mathbb{E}[Y\mid \bm{\mathsf{X}}].$
- \cdot With a binary X:

$$
\mathbb{V}[Y \mid X] = \begin{cases} \sigma^2(0) & \text{with prob. } \mathbb{P}(X = 0) \\ \sigma^2(1) & \text{with prob. } \mathbb{P}(X = 1) \end{cases}
$$

• **Theorem** (Law of Total Variance/EVE's law):

 $[V| Y] = \mathbb{E}[V| Y | X]] + V[\mathbb{E}[Y | X]]$

• The total variance can be decomposed into:

- Conditional variance is just a function of **x**: $\sigma^2(\mathsf{x}) = \mathbb{V}[Y \mid \mathsf{X} = \mathsf{x}]$
- $\bm{\cdot}\;$ $\sigma^2(\bm{\mathsf{X}}) = \mathbb{V}[Y\mid \bm{\mathsf{X}}]$ is an r.v. and a function of $\bm{\mathsf{X}},$ just like $\mathbb{E}[Y\mid \bm{\mathsf{X}}].$
- \cdot With a binary X:

$$
\mathbb{V}[Y \mid X] = \begin{cases} \sigma^2(0) & \text{with prob. } \mathbb{P}(X = 0) \\ \sigma^2(1) & \text{with prob. } \mathbb{P}(X = 1) \end{cases}
$$

• **Theorem** (Law of Total Variance/EVE's law):

 $[V| Y] = \mathbb{E}[V| Y | X]] + V[\mathbb{E}[Y | X]]$

- The total variance can be decomposed into:
	- 1. the average of the within group variance ($\mathbb{E}[V|Y | X]]$) and

- Conditional variance is just a function of **x**: $\sigma^2(\mathsf{x}) = \mathbb{V}[Y \mid \mathsf{X} = \mathsf{x}]$
- $\bm{\cdot}\;$ $\sigma^2(\bm{\mathsf{X}}) = \mathbb{V}[Y\mid \bm{\mathsf{X}}]$ is an r.v. and a function of $\bm{\mathsf{X}},$ just like $\mathbb{E}[Y\mid \bm{\mathsf{X}}].$
- \cdot With a binary X:

$$
\mathbb{V}[Y \mid X] = \begin{cases} \sigma^2(0) & \text{with prob. } \mathbb{P}(X = 0) \\ \sigma^2(1) & \text{with prob. } \mathbb{P}(X = 1) \end{cases}
$$

• **Theorem** (Law of Total Variance/EVE's law):

 $[V| Y] = \mathbb{E}[V| Y | X]] + V[\mathbb{E}[Y | X]]$

- The total variance can be decomposed into:
	- 1. the average of the within group variance ($\mathbb{E}[V|Y | X]]$) and
	- 2. how much the average varies between groups ($\mathbb{E}[Y | \mathbf{X}]]$).