6. Multivariate Distributions

Fall 2023

Matthew Blackwell
Gov 2002 (Harvard)

Where are we? Where are we going?

- Distributions of one variable: how to describe and summarize uncertainty about one variable.
- Today: distributions of multiple variables to describe relationships between variables.
- Later: use data to learn about probability distributions.

Why multiple random variables?

1. How to measure the relationship between two variables X and Y ?
2. What if we have many observations of the same variable, $X_{1}, X_{2}, \ldots, X_{n}$?

1/ Distributions of Multiple Random Variables

Joint distributions

- The joint distribution of two r.v.s, X and Y, describes what pairs of observations, (x, y) are more likely than others.
- Shape of the joint distribution \rightsquigarrow the relationship between X and Y

Discrete r.v.s

Definition

The joint probability mass function (p.m.f.) of a pair of discrete r.v.s, (X, Y) describes the probability of any pair of values:

$$
p_{X, Y}(x, y)=\mathbb{P}(X=x, Y=y)
$$

- Properties of a joint p.m.f.:
- $p_{X, Y}(x, y) \geq 0$ (probabilities can't be negative)
- $\sum_{x} \sum_{y} p_{X, Y}(x, y)=1$ (something must happen)
- \sum_{x} is shorthand for sum over all possible values of X

Example: Gay marriage and gender

	Support Gay Marriage $Y=1$	Oppose Gay Marriage
	$Y=0$	
Female $X=1$	0.32	0.19
Male $X=0$	0.29	0.20

- Joint p.m.f. can be summarized in a cross-tab:
- Each is the probability of that combination, $p_{X, Y}(x, y)$
- Probability that we randomly select a woman who supports gay marriage?

$$
p_{X, Y}(1,1)=\mathbb{P}(X=1, Y=1)=0.32
$$

Marginal distributions

- Can we get the distribution of just one of the r.v.s alone?
- Called the marginal distribution in this context.
- Computing marginal p.m.f. from the joint p.m.f.:

$$
\mathbb{P}(Y=y)=\sum_{x} \mathbb{P}(X=x, Y=y)
$$

- Intuition: sum over the probability that $Y=y$ and $X=x$ for all possible values of x
- Called marginalizing out X.
- Works because values of X are disjoint.

Example: marginals for gay marriage

	Support Gay Marriage $Y=1$	Oppose Gay Marriage $Y=0$	Marginal
	0.32	0.19	
Female $X=1$	0.29	0.20	0.49
Male $X=0$	0.61	0.39	

-What's $\mathbb{P}(Y=1)$?

- Probability that a man supports gay marriage plus the probability that a woman supports gay marriage.

$$
\mathbb{P}(Y=1)=\mathbb{P}(X=1, Y=1)+\mathbb{P}(X=0, Y=1)=0.32+0.29=0.61
$$

- Works for all marginals.

Conditional p.m.f.

Definition

The conditional probability mass function or conditional p.m.f. of Y conditional on X is

$$
\mathbb{P}(Y=y \mid X=x)=\frac{\mathbb{P}(X=x, Y=y)}{\mathbb{P}(X=x)}
$$

for all values x s.t. $\mathbb{P}(X=x)>0$.

- This is a valid univariate probability distribution!

$$
\text { - } P(Y=y \mid X=x) \geq 0 \text { and } \sum_{y} \mathbb{P}(Y=y \mid X=x)=1
$$

- Can define the conditional expectation of this p.m.f.:

$$
E[Y \mid X=x]=\sum_{y} y \mathbb{P}(Y=y \mid X=x)
$$

Example: conditionals for gay marriage

	Support Gay Marriage $Y=1$	Oppose Gay Marriage	Marginal
	0.32	0.19	0.51
Female $X=1$	0.29	0.20	0.49
Male $X=0$	0.61	0.39	

- Probability of favoring gay marriage conditional on male?

$$
\mathbb{P}(Y=1 \mid X=0)=\frac{\mathbb{P}(X=0, Y=1)}{\mathbb{P}(X=0)}=\frac{0.29}{0.29+0.20}=0.592
$$

Example: conditionals for gay marriage

Men

Women

- Two values of $X \rightsquigarrow$ two univariate conditional distributions of Y

Bayes and LTP

- Bayes' rule for r.v.s:

$$
\mathbb{P}(Y=y \mid X=x)=\frac{\mathbb{P}(X=x \mid Y=y) \mathbb{P}(Y=y)}{\mathbb{P}(X=x)}
$$

- Law of total probability for r.v.s:

$$
\mathbb{P}(X=x)=\sum_{y} \mathbb{P}(X=x \mid Y=y) \mathbb{P}(Y=y)
$$

Joint c.d.f.s

Definition

For two r.v.s X and Y, the joint cumulative distribution function or joint c.d.f. $F_{X, Y}(x, y)$ is a function such that for finite values x and y,

$$
F_{X, Y}(x, y)=\mathbb{P}(X \leq x, Y \leq y)
$$

- Well-defined for discrete and continuous X and Y.
- For discrete we simply have:

$$
F_{X, Y}(x, y)=\sum_{i \leq x} \sum_{j \leq y} \mathbb{P}(X=i, Y=j)
$$

Continuous r.v.s

- One continuous r.v.: prob. of being in a subset of the real line.

- Two continuous r.v.s: probability of being in some subset of the 2-dimensional plane.

Continuous joint p.d.f.

Definition

If two continuous r.v.s X and Y with joint c.d.f. $F_{X, Y}$, their joint p.d.f. $f_{X, Y}(x, y)$ is the derivative of $F_{X, Y}$ with respect to x and y,

$$
f_{X, Y}(x, y)=\frac{\partial^{2}}{\partial x \partial y} F_{X, Y}(x, y)
$$

- Integrate over both dimensions to get the probability of a region:

$$
\mathbb{P}((X, Y) \in A)=\iint_{(x, y) \in A} f_{X, Y}(x, y) d x d y .
$$

- $\left\{(x, y): f_{X, Y}(x, y)>0\right\}$ is called the support of the distribution.

Properties of the joint p.d.f.

- Joint p.d.f. must meet the following conditions:

1. $f_{X, Y}(x, y) \geq 0$ for all values of (x, y), (nonnegative)
2. $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) d x d y=1$, (probabilities "sum" to 1)

- $\mathbb{P}(X=x, Y=y)=0$ for similar reasons as with single r.v.s.

Joint densities are 3D

- X and Y axes are on the "floor," height is the value of $f_{X, Y}(x, y)$.
- Remember $f_{X, Y}(x, y) \neq \mathbb{P}(X=x, Y=y)$.

Probability = volume

- $\mathbb{P}((X, Y) \in A)=\iint_{(x, y) \in A} f_{X, Y}(x, y) d x d y$
- Probability = volume above a specific region.

Continuous marginal distributions

- We can recover the marginal PDF of one of the variables by integrating over the distribution of the other variable:

$$
f_{Y}(y)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d x
$$

- Works for either variable:

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y
$$

Visualizing continuous marginals

- Marginal integrates (sums, basically) over other r.v.:

$$
f_{Y}(y)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d x
$$

- Pile up/flatten all of the joint density onto a single dimension.

Continuous conditional distributions

Definition

The conditional p.d.f. of a continuous random variable is

$$
f_{Y \mid X}(y \mid x)=\frac{f_{X, Y}(x, y)}{f_{X}(x)}
$$

for all values x s.t. $f_{X}(x)>0$.

- Implies

$$
\mathbb{P}(a<Y<b \mid X=x)=\int_{a}^{b} f_{Y \mid X}(y \mid x) d y
$$

- Based on the definition of the conditional p.m.f./p.d.f., we have the following factorization:

$$
f_{X, Y}(x, y)=f_{Y \mid X}(y \mid x) f_{X}(x)
$$

Conditional distributions as slices

- $f_{Y \mid X}\left(y \mid x_{0}\right)$ is the conditional p.d.f. of Y when $X=x_{0}$
- $f_{Y \mid X}\left(y \mid x_{0}\right)$ is proportional to joint p.d.f. along $x_{0}: f_{X, Y}\left(y, x_{0}\right)$
- Normalize by dividing by $f_{X}\left(x_{0}\right)$ to ensure proper p.d.f.

Independence

Independence

Two r.v.s Y and X are independent (which we write $X \Perp Y$) if for all sets A and B :

$$
\mathbb{P}(X \in A, Y \in B)=\mathbb{P}(X \in A) \mathbb{P}(Y \in B)
$$

- Knowing the value of X gives us no information about the value of Y.
- If X and Y are independent, then:
- $f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$ and $p_{X, Y}(x, y)=p_{X}(x) p_{Y}(y)$ (joint is the product of marginals)
- $F_{X, Y}(x, y)=F_{X}(x) F_{Y}(y)$
- $f_{Y \mid X}(y \mid x)=f_{Y}(y)$ (conditional is the marginal)
- Conditional independence implies similar to conditional distributions:

$$
\mathbb{P}(X \in A, Y \in B \mid Z)=\mathbb{P}(X \in A \mid Z) \mathbb{P}(Y \in B \mid Z)
$$

2/ Expectations of Joint Distributions

Properties of joint distributions

- Single r.v.: summarized $f_{X}(x)$ with $\mathbb{E}[X]$ and $\mathbb{V}[X]$
- With 2 r.v.s: how strong is the dependence is between X and Y ?
- First: expectations over joint distributions.

Expectations over multiple r.v.s

- 2-d LOTUS: take expectations over the joint distribution.
- With discrete X and Y :

$$
\mathbb{E}[g(X, Y)]=\sum_{x} \sum_{y} g(x, y) p_{X, Y}(x, y)
$$

- With continuous X and Y :

$$
\mathbb{E}[g(X, Y)]=\int_{X} \int_{y} g(x, y) f_{X, Y}(x, y) d x d y
$$

- Marginal expectations:

$$
\mathbb{E}[Y]=\sum_{x} \sum_{y} y p_{X, Y}(x, y)
$$

Applying 2D LOTUS

Theorem

If X and Y are independent r.v.s, then

$$
\mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y] .
$$

- Proof for discrete X and Y :

$$
\begin{aligned}
\mathbb{E}[X Y] & =\sum_{x} \sum_{y} x y f_{X, Y}(x, y) \\
& =\sum_{x} \sum_{y} x y f_{X}(x) f_{Y}(y) \\
& =\left(\sum_{x} x f_{X}(x)\right)\left(\sum_{y} y f_{Y}(y)\right) \\
& =\mathbb{E}[X] \mathbb{E}[Y]
\end{aligned}
$$

3/ Covariance and Correlation

Why (in)dependence?

- Independence assumptions are everywhere in statistics.
- Each response in a poll is considered independent of all other responses.
- In a randomized control trial, treatment assignment is independent of background characteristics.
- Lack of independence is a blessing or a curse:
- Two variables not independent \rightsquigarrow potentially interesting relationship.
- In observational studies, treatment assignment is usually not independent of background characteristics.

Defining covariance

- How do we measure the strength of the dependence between two r.v.?

Covariance

The covariance between two r.v.s, X and Y is defined as:

$$
\operatorname{Cov}[X, Y]=\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]
$$

- How often do high values of X occur with high values of Y ?
- Properties of covariances:
- $\operatorname{Cov}[X, Y]=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]$
- If $X \Perp Y$, then $\operatorname{Cov}[X, Y]=0$

Covariance intuition

Covariance intuition

- Large values of X tend to occur with large values of Y :
- $(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])=($ pos. num. $) \times($ pos. num $)=+$
- Small values of X tend to occur with small values of Y :
- $(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])=($ neg. num. $) \times($ neg. num $)=+$
- If these dominate \rightsquigarrow positive covariance.

Covariance intuition

- Large values of X tend to occur with small values of Y :
- $(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])=($ pos. num. $) \times($ neg. num $)=-$
- Small values of X tend to occur with large values of Y :
- $(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])=($ neg. num. $) \times($ pos. num $)=-$
- If these dominate \rightsquigarrow negative covariance.

Properties of variances and covariances

$$
\operatorname{Cov}[X, Y]=\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]
$$

- Properties of covariances:

1. $\operatorname{Cov}[X, X]=\mathbb{V}[X]$
2. $\operatorname{Cov}[X, Y]=\operatorname{Cov}[Y, X]$
3. $\operatorname{Cov}[X, c]=0$ for any constant c
4. $\operatorname{Cov}[a X, Y]=a \operatorname{Cov}[X, Y]$.
5. $\operatorname{Cov}[X+Y, Z]=\operatorname{Cov}[X, Z]+\operatorname{Cov}[Y, Z]$
6. $\operatorname{Cov}[X+Y, Z+W]=\operatorname{Cov}[X, Z]+\operatorname{Cov}[Y, Z]+\operatorname{Cov}[X, W]+\operatorname{Cov}[Y, W]$

Covariances and variances

- Can now state a few more properties of variances.
- Variance of a sum:

$$
\mathbb{V}[X+Y]=\mathbb{V}[X]+\mathbb{V}[Y]+2 \operatorname{Cov}[X, Y]
$$

- More generally for n r.v.s X_{1}, \ldots, X_{n} :

$$
\mathbb{V}\left[X_{1}+\cdots+X_{n}\right]=\mathbb{V}\left[X_{1}\right]+\cdots+\mathbb{V}\left[X_{n}\right]+2 \sum_{i<j} \operatorname{Cov}\left(X_{i}, X_{j}\right)
$$

- If X and Y independent, $\mathbb{V}[X+Y]=\mathbb{V}[X]+\mathbb{V}[Y]$.
- Beware: $\mathbb{V}[X-Y]=\mathbb{V}[X]+\mathbb{V}[Y]$ as well.

Zero covariance doesn't imply independence

- We saw that $X \Perp Y \rightsquigarrow \operatorname{Cov}[X, Y]=0$.
- Does $\operatorname{Cov}[X, Y]=0$ imply that $X \Perp Y$? No!
- Counterexample: $X \in\{-1,0,1\}$ with equal probability and $Y=X^{2}$.
- Covariance is a measure of linear dependence, so it can miss non-linear dependence.

Correlation

- Correlation is a scale-free measure of linear dependence.

Definition

The correlation between two r.v.s X and Y is defined as:

$$
\rho=\rho(X, Y)=\frac{\operatorname{Cov}[X, Y]}{\sqrt{V[X] \mathbb{V}[Y]}}=\operatorname{Cov}\left(\frac{X-\mathbb{E}[X]}{S D[X]}, \frac{Y-\mathbb{E}[Y]}{S D[Y]}\right)
$$

- Covariance after dividing out the scales of the respective variables.
- Correlation properties:
- $-1 \leq \rho \leq 1$
- $|\rho(X, Y)|=1$ if and only if X and Y are perfectly correlated with a deterministic linear relationship: $Y=a+b X$.

4/ Random vectors

Multivariate random vectors

- Can group r.v.s into random vectors $\mathbf{X}=\left(X_{1}, \ldots, X_{k}\right)^{\prime}$
- \mathbf{X} is a function from the sample space to \mathbb{R}^{k}
- \mathbf{x} is now a length $-k$ vector and potential value of \mathbf{X}
- Generalizes all ideas from 2 variables to k
- Joint distribution function: $F(\mathbf{x})=\mathbb{P}(\mathbf{X} \leq \mathbf{x})=\mathbb{P}\left(X_{1} \leq x_{1}, \ldots, X_{k} \leq x_{k}\right)$.
- Discrete: joint p.m.f. $\mathbb{P}(\mathbf{X}=\mathbf{x})$.
- Continuous: joint p.d.f.

$$
f(\mathbf{x})=\frac{\partial^{k}}{\partial x_{1} \cdots \partial x_{k}} F(\mathbf{x})
$$

- Expectation of a random vector is just the vector of expectations:

$$
\mathbb{E}[\mathbf{X}]=\left(\mathbb{E}\left[X_{1}\right], \mathbb{E}\left[X_{2}\right], \ldots, \mathbb{E}\left[X_{k}\right]\right)^{\prime}
$$

Covariance matrices

- Covariance matrix generalizes (co)variance to this setting:

$$
\mathbb{V}[\mathbf{X}]=\mathbb{E}\left[(\mathbf{X}-\mathbb{E}[\mathbf{X}])(\mathbf{X}-\mathbb{E}[\mathbf{X}])^{\prime}\right]
$$

- We usually write $\mathbb{V}[\mathbf{X}]=\boldsymbol{\Sigma}$ and it is a $k \times k$ symmetric matrix:

$$
\boldsymbol{\Sigma}=\left(\begin{array}{cccc}
\sigma_{1}^{2} & \sigma_{12} & \cdots & \sigma_{1 k} \\
\sigma_{21} & \sigma_{2}^{2} & \cdots & \sigma_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{k 1} & \sigma_{k 2} & \cdots & \sigma_{k}^{2}
\end{array}\right)
$$

where, $\sigma_{j}^{2}=\mathbb{V}\left[X_{j}\right]$ and $\sigma_{i j}=\operatorname{Cov}\left(X_{i}, X_{j}\right)$.

- Symmetric $\left(\boldsymbol{\Sigma}=\boldsymbol{\Sigma}^{\prime}\right)$ because $\operatorname{Cov}\left(X_{i}, X_{j}\right)=\operatorname{Cov}\left(X_{j}, X_{i}\right)$.

Multivariate standard normal distribution

- Let $\mathbf{Z}=\left(Z_{1}, Z_{2}, \ldots, Z_{k}\right)$ be i.i.d. $\mathcal{N}(0,1)$. What is their joint distribution?
- For vector of values $\mathbf{z}=\left(z_{1}, z_{2}, \ldots, z_{k}\right)^{T}$

$$
f(\mathbf{z})=\frac{1}{(2 \pi)^{k / 2}} \exp \left(-\frac{\mathbf{z}^{\prime} \mathbf{z}}{2}\right)
$$

- Easy to see the mean/variance: $\mathbb{E}[\mathbf{Z}]=0$ and $\mathbb{V}[\mathbf{Z}]=\mathbf{I}_{k}$.
- \mathbf{I}_{k} is the k by k identity matrix because $\mathbb{V}\left[Z_{j}\right]=1$ and $\operatorname{Cov}\left(Z_{i}, Z_{j}\right)=0$.

Linear transformations of random vectors

Theorem
If $\mathbf{X} \in \mathbb{R}^{k}$ with $k \times 1$ expectation $\boldsymbol{\mu}$ and $k \times k$ covariance matrix $\boldsymbol{\Sigma}$, and \mathbf{A} is a $q \times k$ matrix, then $\mathbf{A X}$ is a random vector with mean $\mathbf{A} \boldsymbol{\mu}$ and covariance matrix $\mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{\prime}$.

- Let $\mathbf{Z} \sim \mathcal{N}\left(0, \mathbf{I}_{k}\right)$ and $\mathbf{X}=\boldsymbol{\mu}+\mathbf{B Z}$, where \mathbf{B} is $q \times k$ then $\mathbf{X} \sim \mathcal{N}\left(\boldsymbol{\mu}, \mathbf{B B}^{\prime}\right)$
- $\boldsymbol{\mu}: q \times 1$ mean vector $\mathbb{E}[\mathbf{X}]=\boldsymbol{\mu}$
- $\mathrm{V}[\mathbf{X}]=\mathbf{B B}^{\prime}: q \times q$ covariance matrix.
- More generally, if $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ then $\mathbf{Y}=\mathbf{a}+\mathbf{B X} \sim \mathcal{N}\left(\mathbf{a}+\mathbf{B} \boldsymbol{\mu}, \mathbf{B} \boldsymbol{\Sigma} \mathbf{B}^{\prime}\right)$

Properties of the multivariate normal

- If $\left(X_{1}, X_{2}, X_{3}\right)$ are MVN, then $\left(X_{1}, X_{2}\right)$ is also MVN.
- If (X, Y) are multivariate normal with $\operatorname{Cov}(X, Y)=0$, then X and Y are independent.

