6. Multivariate Distributions

Fall 2023

Matthew Blackwell

Gov 2002 (Harvard)

Where are we? Where are we going?

• Distributions of one variable: how to describe and summarize uncertainty about one variable.

Where are we? Where are we going?

- Distributions of one variable: how to describe and summarize uncertainty about one variable.
- Today: **distributions of multiple variables** to describe relationships between variables.

Where are we? Where are we going?

- Distributions of one variable: how to describe and summarize uncertainty about one variable.
- Today: **distributions of multiple variables** to describe relationships between variables.
- Later: use data to **learn** about probability distributions.

Why multiple random variables?

1. How to measure the relationship between two variables X and Y ?

- 1. How to measure the relationship between two variables X and Y ?
- 2. What if we have many observations of the same variable, X_1, X_2, \ldots, X_n ?

1/ Distributions of Multiple Random Variables

Joint distributions

• The **joint distribution** of two r.v.s, X and Y, describes what pairs of observations, (x, y) are more likely than others.

Joint distributions

- The **joint distribution** of two r.v.s, X and Y, describes what pairs of observations, (x, y) are more likely than others.
- Shape of the joint distribution \rightsquigarrow the relationship between X and Y

$$
p_{X,Y}(x,y) = \mathbb{P}(X=x,Y=y)
$$

The **joint probability mass function (p.m.f.)** of a pair of discrete r.v.s, (X, Y) describes the probability of any pair of values:

$$
p_{X,Y}(x,y) = \mathbb{P}(X=x,Y=y)
$$

• Properties of a joint p.m.f.:

$$
p_{X,Y}(x,y) = \mathbb{P}(X=x,Y=y)
$$

- Properties of a joint p.m.f.:
	- $p_{X,Y}(x, y) \geq 0$

$$
p_{X,Y}(x,y) = \mathbb{P}(X=x,Y=y)
$$

- Properties of a joint p.m.f.:
	- $p_{X,Y}(x, y) \ge 0$ (probabilities can't be negative)

$$
p_{X,Y}(x,y) = \mathbb{P}(X=x,Y=y)
$$

- Properties of a joint p.m.f.:
	- $p_{X,Y}(x, y) \ge 0$ (probabilities can't be negative)
	- $\cdot \sum_{x} \sum_{y} p_{X,Y}(x, y) = 1$

$$
p_{X,Y}(x,y) = \mathbb{P}(X=x,Y=y)
$$

- Properties of a joint p.m.f.:
	- $p_{X,Y}(x, y) \ge 0$ (probabilities can't be negative)
	- $\textbf{\textit{+}}\ \sum_{\textsf{x}}\sum_{\textsf{y}}\textsf{p}_{\textsf{X},\textsf{Y}}(\textsf{x},\textsf{y})=1$ (something must happen)

$$
p_{X,Y}(x,y) = \mathbb{P}(X=x,Y=y)
$$

- Properties of a joint p.m.f.:
	- $p_{X,Y}(x, y) \ge 0$ (probabilities can't be negative)
	- $\textbf{\textit{+}}\ \sum_{\textsf{x}}\sum_{\textsf{y}}\textsf{p}_{\textsf{X},\textsf{Y}}(\textsf{x},\textsf{y})=1$ (something must happen)
	- $\cdot \ \sum_\textsf{x}$ is shorthand for sum over all possible values of X

• Joint p.m.f. can be summarized in a cross-tab:

- Joint p.m.f. can be summarized in a cross-tab:
	- Each is the probability of that combination, $p_{X,Y}(x, y)$

- Joint p.m.f. can be summarized in a cross-tab:
	- Each is the probability of that combination, $p_{X,Y}(x, y)$
- Probability that we randomly select a woman who supports gay marriage?

- Joint p.m.f. can be summarized in a cross-tab:
	- Each is the probability of that combination, $p_{X,Y}(x, y)$
- Probability that we randomly select a woman who supports gay marriage?

 $p_{X,Y}(1,1) = \mathbb{P}(X = 1, Y = 1) = 0.32$

• Can we get the distribution of just one of the r.v.s alone?

- Can we get the distribution of just one of the r.v.s alone?
	- Called the **marginal distribution** in this context.
- Can we get the distribution of just one of the r.v.s alone?
	- Called the **marginal distribution** in this context.
- Computing **marginal p.m.f.** from the joint p.m.f.:

$$
\mathbb{P}(Y = y) = \sum_{x} \mathbb{P}(X = x, Y = y)
$$

- Can we get the distribution of just one of the r.v.s alone?
	- Called the **marginal distribution** in this context.
- Computing **marginal p.m.f.** from the joint p.m.f.:

$$
\mathbb{P}(Y = y) = \sum_{x} \mathbb{P}(X = x, Y = y)
$$

• Intuition: sum over the probability that $Y = y$ and $X = x$ for all possible values of x

- Can we get the distribution of just one of the r.v.s alone?
	- Called the **marginal distribution** in this context.
- Computing **marginal p.m.f.** from the joint p.m.f.:

$$
\mathbb{P}(Y = y) = \sum_{x} \mathbb{P}(X = x, Y = y)
$$

- Intuition: sum over the probability that $Y = y$ and $X = x$ for all possible values of x
	- \cdot Called **marginalizing out** X .
- Can we get the distribution of just one of the r.v.s alone?
	- Called the **marginal distribution** in this context.
- Computing **marginal p.m.f.** from the joint p.m.f.:

$$
\mathbb{P}(Y = y) = \sum_{x} \mathbb{P}(X = x, Y = y)
$$

- Intuition: sum over the probability that $Y = y$ and $X = x$ for all possible values of x
	- \cdot Called **marginalizing out** X .
	- Works because values of X are disjoint.

• What's $P(Y = 1)$?

- What's $P(Y = 1)$?
	- Probability that a man supports gay marriage plus the probability that a woman supports gay marriage.

 $P(Y = 1)$

• What's
$$
\mathbb{P}(Y = 1)
$$
?

• Probability that a man supports gay marriage plus the probability that a woman supports gay marriage.

$$
\mathbb{P}(Y=1) = \mathbb{P}(X=1, Y=1) + \mathbb{P}(X=0, Y=1)
$$

• What's
$$
\mathbb{P}(Y = 1)
$$
?

• Probability that a man supports gay marriage plus the probability that a woman supports gay marriage.

$$
\mathbb{P}(Y=1) = \mathbb{P}(X=1, Y=1) + \mathbb{P}(X=0, Y=1) = 0.32 + 0.29
$$

• What's
$$
\mathbb{P}(Y = 1)
$$
?

• Probability that a man supports gay marriage plus the probability that a woman supports gay marriage.

$$
\mathbb{P}(Y=1) = \mathbb{P}(X=1, Y=1) + \mathbb{P}(X=0, Y=1) = 0.32 + 0.29 = 0.61
$$

• What's
$$
\mathbb{P}(Y = 1)
$$
?

• Probability that a man supports gay marriage plus the probability that a woman supports gay marriage.

$$
\mathbb{P}(Y=1) = \mathbb{P}(X=1, Y=1) + \mathbb{P}(X=0, Y=1) = 0.32 + 0.29 = 0.61
$$

• Works for all marginals.

• What's
$$
\mathbb{P}(Y = 1)
$$
?

• Probability that a man supports gay marriage plus the probability that a woman supports gay marriage.

$$
\mathbb{P}(Y=1) = \mathbb{P}(X=1, Y=1) + \mathbb{P}(X=0, Y=1) = 0.32 + 0.29 = 0.61
$$

• Works for all marginals.

Conditional p.m.f.

Definition

The **conditional probability mass function** or conditional p.m.f. of Y conditional on X is

$$
\mathbb{P}(Y = y \mid X = x) = \frac{\mathbb{P}(X = x, Y = y)}{\mathbb{P}(X = x)}
$$

for all values x s.t. $P(X = x) > 0$.

Conditional p.m.f.

Definition

The **conditional probability mass function** or conditional p.m.f. of Y $conditional$ on X is

$$
\mathbb{P}(Y = y \mid X = x) = \frac{\mathbb{P}(X = x, Y = y)}{\mathbb{P}(X = x)}
$$

for all values x s.t. $\mathbb{P}(X = x) > 0$.

• This is a valid univariate probability distribution!

Conditional p.m.f.

Definition

The **conditional probability mass function** or conditional p.m.f. of Y $conditional$ on X is

$$
\mathbb{P}(Y = y \mid X = x) = \frac{\mathbb{P}(X = x, Y = y)}{\mathbb{P}(X = x)}
$$

for all values x s.t. $\mathbb{P}(X = x) > 0$.

• This is a valid univariate probability distribution!

•
$$
P(Y = y | X = x) \ge 0
$$
 and $\sum_{y} P(Y = y | X = x) = 1$
Conditional p.m.f.

Definition

The **conditional probability mass function** or conditional p.m.f. of Y $conditional$ on X is

$$
\mathbb{P}(Y = y \mid X = x) = \frac{\mathbb{P}(X = x, Y = y)}{\mathbb{P}(X = x)}
$$

for all values x s.t. $P(X = x) > 0$.

• This is a valid univariate probability distribution!

•
$$
P(Y = y | X = x) \ge 0
$$
 and $\sum_{y} P(Y = y | X = x) = 1$

• Can define the **conditional expectation** of this p.m.f.:

$$
E[Y \mid X = x] = \sum_{y} y \mathbb{P}(Y = y \mid X = x)
$$

• Probability of favoring gay marriage conditional on **male**?

 $P(Y = 1 | X = 0)$

$$
\mathbb{P}(Y = 1 | X = 0) = \frac{\mathbb{P}(X = 0, Y = 1)}{\mathbb{P}(X = 0)}
$$

$$
\mathbb{P}(Y=1 \mid X=0) = \frac{\mathbb{P}(X=0, Y=1)}{\mathbb{P}(X=0)} = \frac{0.29}{0.29 + 0.20}
$$

$$
\mathbb{P}(Y=1 \mid X=0) = \frac{\mathbb{P}(X=0, Y=1)}{\mathbb{P}(X=0)} = \frac{0.29}{0.29 + 0.20} = 0.592
$$

• Two values of $X \leadsto$ two **univariate** conditional distributions of Y

• Bayes' rule for r.v.s:

$$
\mathbb{P}(Y = y \mid X = x) = \frac{\mathbb{P}(X = x \mid Y = y)\mathbb{P}(Y = y)}{\mathbb{P}(X = x)}
$$

• Bayes' rule for r.v.s:

$$
\mathbb{P}(Y = y \mid X = x) = \frac{\mathbb{P}(X = x \mid Y = y)\mathbb{P}(Y = y)}{\mathbb{P}(X = x)}
$$

• Law of total probability for r.v.s:

$$
\mathbb{P}(X = x) = \sum_{y} \mathbb{P}(X = x \mid Y = y)\mathbb{P}(Y = y)
$$

For two r.v.s X and Y, the **joint cumulative distribution function** or joint c.d.f. $F_{X,Y}(x, y)$ is a function such that for finite values x and y,

 $F_{X, Y}(x, y) = \mathbb{P}(X \leq x, Y \leq y)$

For two r.v.s X and Y, the joint cumulative distribution function or joint c.d.f. $F_{X,Y}(x, y)$ is a function such that for finite values x and y,

$$
F_{X,Y}(x,y) = \mathbb{P}(X \le x, Y \le y)
$$

• Well-defined for discrete and continuous X and Y .

For two r.v.s X and Y , the **joint cumulative distribution function** or joint c.d.f. $F_{X,Y}(x, y)$ is a function such that for finite values x and y,

$$
F_{X,Y}(x,y) = \mathbb{P}(X \le x, Y \le y)
$$

- Well-defined for discrete and continuous X and Y .
- For discrete we simply have:

$$
F_{X,Y}(x,y) = \sum_{i \leq x} \sum_{j \leq y} \mathbb{P}(X = i, Y = j)
$$

• One continuous r.v.: prob. of being in a subset of the real line.

• One continuous r.v.: prob. of being in a subset of the real line.

• Two continuous r.v.s: probability of being in some subset of the 2-dimensional plane.

If two continuous r.v.s X and Y with joint c.d.f. $F_{X,Y}$, their **joint p.d.f.** $f_{X,Y}(x, y)$ is the derivative of $F_{X,Y}$ with respect to x and y,

$$
f_{X,Y}(x,y) = \frac{\partial^2}{\partial x \partial y} F_{X,Y}(x,y)
$$

If two continuous r.v.s X and Y with joint c.d.f. $F_{X,Y}$, their **joint p.d.f.** $f_{X,Y}(x, y)$ is the derivative of $F_{X,Y}$ with respect to x and y,

$$
f_{X,Y}(x,y) = \frac{\partial^2}{\partial x \partial y} F_{X,Y}(x,y)
$$

• Integrate over both dimensions to get the probability of a region:

$$
\mathbb{P}((X,Y)\in A)=\iint_{(x,y)\in A}f_{X,Y}(x,y)dxdy.
$$

If two continuous r.v.s X and Y with joint c.d.f. $F_{X,Y}$, their **joint p.d.f.** $f_{X,Y}(x, y)$ is the derivative of $F_{X,Y}$ with respect to x and y,

$$
f_{X,Y}(x,y) = \frac{\partial^2}{\partial x \partial y} F_{X,Y}(x,y)
$$

• Integrate over both dimensions to get the probability of a region:

$$
\mathbb{P}((X,Y)\in A)=\iint_{(x,y)\in A}f_{X,Y}(x,y)dxdy.
$$

• $\{(x, y) : f_{X, Y}(x, y) > 0\}$ is called the **support** of the distribution.

Properties of the joint p.d.f.

• Joint p.d.f. must meet the following conditions:

• Joint p.d.f. must meet the following conditions:

1. $f_{X, Y}(x, y) \ge 0$ for all values of (x, y) ,

• Joint p.d.f. must meet the following conditions:

1. $f_{X, Y}(x, y) \ge 0$ for all values of (x, y) , (nonnegative)

- Joint p.d.f. must meet the following conditions:
	- 1. $f_{X, Y}(x, y) \ge 0$ for all values of (x, y) , (nonnegative) 2. $\int_{-\infty}^{\infty}$ −∞ ∫ ∞ $\int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1,$
- Joint p.d.f. must meet the following conditions:
	- 1. $f_{X, Y}(x, y) \ge 0$ for all values of (x, y) , (nonnegative)
	- 2. $\int_{-\infty}^{\infty}$ −∞ ∫ ∞ $\int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1$, (probabilities "sum" to 1)
- Joint p.d.f. must meet the following conditions:
	- 1. $f_{X, Y}(x, y) \ge 0$ for all values of (x, y) , (nonnegative)
	- 2. $\int_{-\infty}^{\infty}$ −∞ ∫ ∞ $\int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1$, (probabilities "sum" to 1)
- $P(X = x, Y = y) = 0$ for similar reasons as with single r.v.s.

Joint densities are 3D

• X and Y axes are on the "floor," height is the value of $f_{X,Y}(x, y)$.

Joint densities are 3D

- X and Y axes are on the "floor," height is the value of $f_{X,Y}(x, y)$.
- Remember $f_{X,Y}(x, y) \neq \mathbb{P}(X = x, Y = y)$.

Probability = volume

• $\mathbb{P}((X, Y) \in A) = \iint_{(x,y) \in A} f_{X,Y}(x, y) dx dy$

Probability = volume

- $\mathbb{P}((X, Y) \in A) = \iint_{(x, y) \in A} f_{X, Y}(x, y) dx dy$
- Probability = volume above a specific region.

• We can recover the marginal PDF of one of the variables by integrating over the distribution of the other variable:

$$
f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx
$$

• We can recover the marginal PDF of one of the variables by integrating over the distribution of the other variable:

$$
f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx
$$

• Works for either variable:

$$
f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy
$$

Visualizing continuous marginals

• Marginal integrates (sums, basically) over other r.v.:

$$
f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) dx
$$

Visualizing continuous marginals

• Marginal integrates (sums, basically) over other r.v.:

$$
f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx
$$

• Pile up/flatten all of the joint density onto a single dimension.

Continuous conditional distributions

Definition

The **conditional p.d.f.** of a continuous random variable is

$$
f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)}
$$

for all values x s.t. $f_X(x) > 0$.

• Implies

$$
\mathbb{P}(a < Y < b | X = x) = \int_{a}^{b} f_{Y|X}(y|x) dy
$$

Continuous conditional distributions

Definition

The **conditional p.d.f.** of a continuous random variable is

$$
f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)}
$$

for all values x s.t. $f_X(x) > 0$.

• Implies

$$
\mathbb{P}(a < Y < b | X = x) = \int_{a}^{b} f_{Y|X}(y|x) dy
$$

• Based on the definition of the conditional p.m.f./p.d.f., we have the following factorization:

$$
f_{X,Y}(x,y) = f_{Y|X}(y|x) f_X(x)
$$

Conditional distributions as slices

 $\bm{\cdot}$ $f_{\bm{\mathsf{Y}}|\bm{\mathsf{X}}} (y|x_0)$ is the conditional p.d.f. of $\bm{\mathsf{Y}}$ when $\bm{\mathsf{X}}=\bm{\mathsf{x}}_0$

Conditional distributions as slices

- $\bm{\cdot}$ $f_{\bm{\mathsf{Y}}|\bm{\mathsf{X}}} (y|x_0)$ is the conditional p.d.f. of $\bm{\mathsf{Y}}$ when $\bm{\mathsf{X}}=\bm{\mathsf{x}}_0$
- $f_{Y|X}(y|x_0)$ is proportional to joint p.d.f. along x_0 : $f_{X,Y}(y,x_0)$

Conditional distributions as slices

- $\bm{\cdot}$ $f_{\bm{\mathsf{Y}}|\bm{\mathsf{X}}} (y|x_0)$ is the conditional p.d.f. of $\bm{\mathsf{Y}}$ when $\bm{\mathsf{X}}=\bm{\mathsf{x}}_0$
- $f_{Y|X}(y|x_0)$ is proportional to joint p.d.f. along x_0 : $f_{X,Y}(y,x_0)$
- Normalize by dividing by $f_{\chi}(x_0)$ to ensure proper p.d.f.
Independence

Two r.v.s Y and X are **independent** (which we write $X \perp\!\!\!\perp Y$) if for all sets A and B :

$$
\mathbb{P}(X \in A, Y \in B) = \mathbb{P}(X \in A)\mathbb{P}(Y \in B)
$$

• Knowing the value of X gives us no information about the value of Y .

Independence

Two r.v.s Y and X are **independent** (which we write $X \perp Y$) if for all sets A and B :

$$
\mathbb{P}(X \in A, Y \in B) = \mathbb{P}(X \in A)\mathbb{P}(Y \in B)
$$

- Knowing the value of X gives us no information about the value of Y .
- \cdot If X and Y are independent, then:

Independence

Two r.v.s Y and X are **independent** (which we write $X \perp Y$) if for all sets A and B :

$$
\mathbb{P}(X \in A, Y \in B) = \mathbb{P}(X \in A)\mathbb{P}(Y \in B)
$$

- Knowing the value of X gives us no information about the value of Y .
- If X and Y are independent, then:
	- $f_{X,Y}(x,y) = f_X(x) f_Y(y)$ and $p_{X,Y}(x,y) = p_X(x) p_Y(y)$ (joint is the product of marginals)

Independence

Two r.v.s Y and X are **independent** (which we write $X \perp Y$) if for all sets A and B :

$$
\mathbb{P}(X \in A, Y \in B) = \mathbb{P}(X \in A)\mathbb{P}(Y \in B)
$$

- Knowing the value of X gives us no information about the value of Y .
- If X and Y are independent, then:
	- $f_{X,Y}(x,y) = f_X(x) f_Y(y)$ and $p_{X,Y}(x,y) = p_X(x) p_Y(y)$ (joint is the product of marginals)
	- $F_{X,Y}(x, y) = F_X(x) F_Y(y)$

Independence

Two r.v.s Y and X are **independent** (which we write $X \perp\!\!\!\perp Y$) if for all sets A and B :

$$
\mathbb{P}(X \in A, Y \in B) = \mathbb{P}(X \in A)\mathbb{P}(Y \in B)
$$

- Knowing the value of X gives us no information about the value of Y .
- If X and Y are independent, then:
	- $f_{X,Y}(x,y) = f_X(x) f_Y(y)$ and $p_{X,Y}(x,y) = p_X(x) p_Y(y)$ (joint is the product of marginals)
	- $F_{X,Y}(x, y) = F_X(x) F_Y(y)$
	- $f_{\gamma|X}(y|x) = f_{\gamma}(y)$ (conditional is the marginal)

Independence

Two r.v.s Y and X are **independent** (which we write $X \perp\!\!\!\perp Y$) if for all sets A and B :

$$
\mathbb{P}(X \in A, Y \in B) = \mathbb{P}(X \in A)\mathbb{P}(Y \in B)
$$

- Knowing the value of X gives us no information about the value of Y .
- If X and Y are independent, then:
	- $f_{X,Y}(x,y) = f_X(x) f_Y(y)$ and $p_{X,Y}(x,y) = p_X(x) p_Y(y)$ (joint is the product of marginals)
	- $F_{X,Y}(x, y) = F_X(x) F_Y(y)$
	- $f_{\gamma|X}(y|x) = f_{\gamma}(y)$ (conditional is the marginal)
- **Conditional independence** implies similar to conditional distributions:

$$
\mathbb{P}(X \in A, Y \in B \mid Z) = \mathbb{P}(X \in A \mid Z)\mathbb{P}(Y \in B \mid Z)
$$

2/ Expectations of Joint Distributions

Properties of joint distributions

• Single r.v.: summarized $f_X(x)$ with $\mathbb{E}[X]$ and $\mathbb{V}[X]$

- Single r.v.: summarized $f_X(x)$ with $\mathbb{E}[X]$ and $\mathbb{V}[X]$
- With 2 r.v.s: how strong is the dependence is between X and Y ?
- Single r.v.: summarized $f_X(x)$ with $\mathbb{E}[X]$ and $\mathbb{V}[X]$
- With 2 r.v.s: how strong is the dependence is between X and Y ?
- First: **expectations** over joint distributions.

• **2-d LOTUS**: take expectations over the joint distribution.

- **2-d LOTUS**: take expectations over the joint distribution.
- With discrete X and Y :

$$
\mathbb{E}[g(X, Y)] = \sum_{x} \sum_{y} g(x, y) p_{X, Y}(x, y)
$$

- **2-d LOTUS**: take expectations over the joint distribution.
- With discrete X and Y :

$$
\mathbb{E}[g(X, Y)] = \sum_{x} \sum_{y} g(x, y) p_{X, Y}(x, y)
$$

 \cdot With continuous X and Y :

$$
\mathbb{E}[g(X,Y)] = \int_{X} \int_{Y} g(x,y) f_{X,Y}(x,y) dx dy
$$

- **2-d LOTUS**: take expectations over the joint distribution.
- With discrete X and Y :

$$
\mathbb{E}[g(X, Y)] = \sum_{x} \sum_{y} g(x, y) p_{X, Y}(x, y)
$$

 \cdot With continuous X and Y :

$$
\mathbb{E}[g(X,Y)] = \int_{X} \int_{Y} g(x,y) f_{X,Y}(x,y) dxdy
$$

• Marginal expectations:

$$
\mathbb{E}[Y] = \sum_{x} \sum_{y} y \ p_{X,Y}(x,y)
$$

Theorem

If X and Y are independent r.v.s, then

 $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y].$

Theorem

If X and Y are independent r.v.s, then

 $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y].$

• Proof for discrete X and Y

Theorem

If X and Y are independent r.v.s, then

 $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y].$

• Proof for discrete X and Y

$$
\mathbb{E}[XY] = \sum_{x} \sum_{y} xy f_{X,Y}(x, y)
$$

Theorem

If X and Y are independent r.v.s, then

 $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y].$

• Proof for discrete X and Y

$$
\mathbb{E}[XY] = \sum_{x} \sum_{y} xy f_{X,Y}(x, y)
$$

$$
= \sum_{x} \sum_{y} xy f_{X}(x) f_{Y}(y)
$$

Theorem

If X and Y are independent r.v.s, then

 $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y].$

• Proof for discrete X and Y :

$$
\mathbb{E}[XY] = \sum_{x} \sum_{y} xy f_{X,Y}(x, y)
$$

=
$$
\sum_{x} \sum_{y} xy f_{X}(x) f_{Y}(y)
$$

=
$$
\left(\sum_{x} x f_{X}(x)\right) \left(\sum_{y} y f_{Y}(y)\right)
$$

Theorem

If X and Y are independent r.v.s, then

 $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y].$

• Proof for discrete X and Y :

$$
\mathbb{E}[XY] = \sum_{x} \sum_{y} xy f_{X,Y}(x, y)
$$

=
$$
\sum_{x} \sum_{y} xy f_{X}(x) f_{Y}(y)
$$

=
$$
\left(\sum_{x} x f_{X}(x)\right) \left(\sum_{y} y f_{Y}(y)\right)
$$

=
$$
\mathbb{E}[X]\mathbb{E}[Y]
$$

3/ Covariance and Correlation

• Independence assumptions are **everywhere** in statistics.

- Independence assumptions are **everywhere** in statistics.
	- Each response in a poll is considered **independent** of all other responses.
- Independence assumptions are **everywhere** in statistics.
	- Each response in a poll is considered **independent** of all other responses.
	- In a randomized control trial, treatment assignment is **independent** of background characteristics.
- Independence assumptions are **everywhere** in statistics.
	- Each response in a poll is considered **independent** of all other responses.
	- In a randomized control trial, treatment assignment is **independent** of background characteristics.
- Lack of independence is a blessing or a curse:
- Independence assumptions are **everywhere** in statistics.
	- Each response in a poll is considered **independent** of all other responses.
	- In a randomized control trial, treatment assignment is **independent** of background characteristics.
- Lack of independence is a blessing or a curse:
	- Two variables not independent \rightsquigarrow potentially interesting relationship.
- Independence assumptions are **everywhere** in statistics.
	- Each response in a poll is considered **independent** of all other responses.
	- In a randomized control trial, treatment assignment is **independent** of background characteristics.
- Lack of independence is a blessing or a curse:
	- Two variables not independent \rightsquigarrow potentially interesting relationship.
	- In observational studies, treatment assignment is usually **not independent** of background characteristics.

• How do we measure the strength of the dependence between two r.v.?

• How do we measure the strength of the dependence between two r.v.?

Covariance

$$
\text{Cov}[X, Y] = \mathbb{E}\Big[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])\Big]
$$

• How do we measure the strength of the dependence between two r.v.?

Covariance

The **covariance** between two r.v.s, X and Y is defined as:

$$
\text{Cov}[X,Y] = \mathbb{E}\Big[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])\Big]
$$

 \cdot How often do high values of X occur with high values of Y?

• How do we measure the strength of the dependence between two r.v.?

Covariance

$$
\text{Cov}[X,Y] = \mathbb{E}\Big[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])\Big]
$$

- How often do high values of X occur with high values of Y ?
- Properties of covariances:

• How do we measure the strength of the dependence between two r.v.?

Covariance

$$
\text{Cov}[X,Y] = \mathbb{E}\Big[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])\Big]
$$

- How often do high values of X occur with high values of Y ?
- Properties of covariances:
	- Cov $[X, Y] = \mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y]$

• How do we measure the strength of the dependence between two r.v.?

Covariance

$$
\text{Cov}[X,Y] = \mathbb{E}\Big[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])\Big]
$$

- How often do high values of X occur with high values of Y ?
- Properties of covariances:
	- Cov $[X, Y] = \mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y]$
	- If $X \perp\!\!\!\perp Y$, then Cov[X, Y] = 0

Covariance intuition

Covariance intuition

• Large values of X tend to occur with large values of Y :

Covariance intuition

• Large values of X tend to occur with large values of Y :

• $(X - \mathbb{E}[X])(Y - \mathbb{E}[Y]) = (pos. num.) \times (pos. num) = +$

- Large values of X tend to occur with large values of Y :
	- $(X \mathbb{E}[X])(Y \mathbb{E}[Y]) = (pos. num.) \times (pos. num) = +$
- Small values of X tend to occur with small values of Y :

• Large values of X tend to occur with large values of Y :

• $(X - \mathbb{E}[X])(Y - \mathbb{E}[Y]) = (pos. num.) \times (pos. num) = +$

• Small values of X tend to occur with small values of Y :

• $(X - \mathbb{E}[X])(Y - \mathbb{E}[Y]) = (neg. num.) \times (neg. num) = +$

• Large values of X tend to occur with large values of Y :

• $(X - \mathbb{E}[X])(Y - \mathbb{E}[Y]) = (pos. num.) \times (pos. num) = +$

• Small values of X tend to occur with small values of Y :

• $(X - \mathbb{E}[X])(Y - \mathbb{E}[Y]) = (neg. num.) \times (neg. num) = +$

• If these dominate \rightsquigarrow positive covariance.

• Large values of X tend to occur with small values of Y :

• Large values of X tend to occur with small values of Y :

• $(X - \mathbb{E}[X])(Y - \mathbb{E}[Y]) = (pos. num.) \times (neg. num) = -$

• Large values of X tend to occur with small values of Y :

 \bullet $(X - \mathbb{E}[X])(Y - \mathbb{E}[Y]) = (pos. num.) \times (neg. num) = -$

• Small values of X tend to occur with large values of Y :

• Large values of X tend to occur with small values of Y :

• $(X - \mathbb{E}[X])(Y - \mathbb{E}[Y]) = (pos. num.) \times (neg. num) = -$

• Small values of X tend to occur with large values of Y :

• $(X - \mathbb{E}[X])(Y - \mathbb{E}[Y]) = (neg. num.) \times (pos. num) = -$

• Large values of X tend to occur with small values of Y :

• $(X - \mathbb{E}[X])(Y - \mathbb{E}[Y]) = (pos. num.) \times (neg. num) = -$

• Small values of X tend to occur with large values of Y :

• $(X - \mathbb{E}[X])(Y - \mathbb{E}[Y]) =$ (neg. num.) \times (pos. num) = -

• If these dominate \rightsquigarrow negative covariance.

 $Cov[X, Y] = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$

• Properties of covariances:

- Properties of covariances:
	- 1. $Cov[X, X] = V[X]$

- Properties of covariances:
	- 1. Cov $[X, X] = V[X]$
	- 2. Cov $[X, Y] = \text{Cov}[Y, X]$

- Properties of covariances:
	- 1. Cov $[X, X] = V[X]$
	- 2. Cov $[X, Y] = \text{Cov}[Y, X]$
	- 3. Cov $[X, c] = 0$ for any constant c

- Properties of covariances:
	- 1. Cov $[X, X] = V[X]$
	- 2. Cov $[X, Y] = \text{Cov}[Y, X]$
	- 3. Cov $[X, c] = 0$ for any constant c
	- 4. Cov[aX, Y] = a Cov[X, Y].

- Properties of covariances:
	- 1. Cov $[X, X] = V[X]$
	- 2. Cov $[X, Y] = \text{Cov}[Y, X]$
	- 3. Cov $[X, c] = 0$ for any constant c
	- 4. Cov[aX, Y] = a Cov[X, Y].
	- 5. $Cov[X + Y, Z] = Cov[X, Z] + Cov[Y, Z]$

- Properties of covariances:
	- 1. Cov $[X, X] = V[X]$
	- 2. Cov $[X, Y] = \text{Cov}[Y, X]$
	- 3. Cov $[X, c] = 0$ for any constant c
	- 4. Cov[aX, Y] = a Cov[X, Y].
	- 5. $Cov[X + Y, Z] = Cov[X, Z] + Cov[Y, Z]$
	- 6. $Cov[X + Y, Z + W] = Cov[X, Z] + Cov[Y, Z] + Cov[X, W] + Cov[Y, W]$

• Can now state a few more properties of variances.

- Can now state a few more properties of variances.
- Variance of a sum:

$$
\mathbb{V}[X+Y] = \mathbb{V}[X] + \mathbb{V}[Y] + 2\text{Cov}[X,Y]
$$

- Can now state a few more properties of variances.
- Variance of a sum:

$$
\mathbb{V}[X+Y] = \mathbb{V}[X] + \mathbb{V}[Y] + 2\text{Cov}[X, Y]
$$

• More generally for *n* r.v.s X_1, \ldots, X_n :

$$
\mathbb{V}[X_1+\cdots+X_n]=\mathbb{V}[X_1]+\cdots+\mathbb{V}[X_n]+2\sum_{i
$$

- Can now state a few more properties of variances.
- Variance of a sum:

$$
\mathbb{V}[X+Y] = \mathbb{V}[X] + \mathbb{V}[Y] + 2\text{Cov}[X,Y]
$$

• More generally for *n* r.v.s X_1, \ldots, X_n :

$$
\mathbb{V}[X_1+\cdots+X_n]=\mathbb{V}[X_1]+\cdots+\mathbb{V}[X_n]+2\sum_{i
$$

• If X and Y independent, $\mathbb{V}[X + Y] = \mathbb{V}[X] + \mathbb{V}[Y]$.

- Can now state a few more properties of variances.
- Variance of a sum:

$$
\mathbb{V}[X+Y] = \mathbb{V}[X] + \mathbb{V}[Y] + 2\text{Cov}[X, Y]
$$

• More generally for *n* r.v.s X_1, \ldots, X_n :

$$
\mathbb{V}[X_1+\cdots+X_n]=\mathbb{V}[X_1]+\cdots+\mathbb{V}[X_n]+2\sum_{i
$$

- If X and Y independent, $\mathbb{V}[X + Y] = \mathbb{V}[X] + \mathbb{V}[Y]$.
	- Beware: $\mathbb{V}[X Y] = \mathbb{V}[X] + \mathbb{V}[Y]$ as well.

• We saw that $X \perp\!\!\!\perp Y \rightsquigarrow \text{Cov}[X, Y] = 0$.

- We saw that $X \perp\!\!\!\perp Y \rightsquigarrow \text{Cov}[X, Y] = 0$.
- Does Cov $[X, Y] = 0$ imply that $X \perp \!\!\!\perp Y$?

- We saw that $X \perp\!\!\!\perp Y \rightsquigarrow \text{Cov}[X, Y] = 0$.
- Does Cov $[X, Y] = 0$ imply that $X \perp \!\!\!\perp Y$? **No!**

- We saw that $X \perp\!\!\!\perp Y \rightsquigarrow \text{Cov}[X, Y] = 0$.
- Does Cov $[X, Y] = 0$ imply that $X \perp \!\!\!\perp Y$? **No!**
- **Counterexample:** $X \in \{-1, 0, 1\}$ with equal probability and $Y = X^2$.

- We saw that $X \perp\!\!\!\perp Y \rightsquigarrow \text{Cov}[X, Y] = 0$.
- Does Cov $[X, Y] = 0$ imply that $X \perp \!\!\!\perp Y$? **No!**
- **Counterexample:** $X \in \{-1, 0, 1\}$ with equal probability and $Y = X^2$.
- Covariance is a measure of **linear dependence**, so it can miss non-linear dependence.

• Correlation is a scale-free measure of linear dependence.

• Correlation is a scale-free measure of linear dependence.

Definition

$$
\rho = \rho(X, Y) = \frac{\text{Cov}[X, Y]}{\sqrt{\mathbb{V}[X]\mathbb{V}[Y]}} = \text{Cov}\left(\frac{X - \mathbb{E}[X]}{SD[X]}, \frac{Y - \mathbb{E}[Y]}{SD[Y]}\right)
$$

• Correlation is a scale-free measure of linear dependence.

Definition

The **correlation** between two r.v.s X and Y is defined as:

$$
\rho = \rho(X,Y) = \frac{\text{Cov}[X,Y]}{\sqrt{\mathbb{V}[X]\mathbb{V}[Y]}} = \text{Cov}\left(\frac{X - \mathbb{E}[X]}{SD[X]}, \frac{Y - \mathbb{E}[Y]}{SD[Y]}\right)
$$

• Covariance after dividing out the scales of the respective variables.

• Correlation is a scale-free measure of linear dependence.

Definition

$$
\rho = \rho(X,Y) = \frac{\text{Cov}[X,Y]}{\sqrt{\mathbb{V}[X]\mathbb{V}[Y]}} = \text{Cov}\left(\frac{X - \mathbb{E}[X]}{SD[X]}, \frac{Y - \mathbb{E}[Y]}{SD[Y]}\right)
$$

- Covariance after dividing out the scales of the respective variables.
- Correlation properties:

• Correlation is a scale-free measure of linear dependence.

Definition

$$
\rho = \rho(X,Y) = \frac{\text{Cov}[X,Y]}{\sqrt{\mathbb{V}[X]\mathbb{V}[Y]}} = \text{Cov}\left(\frac{X - \mathbb{E}[X]}{SD[X]}, \frac{Y - \mathbb{E}[Y]}{SD[Y]}\right)
$$

- Covariance after dividing out the scales of the respective variables.
- Correlation properties:
	- $-1 < \rho < 1$

• Correlation is a scale-free measure of linear dependence.

Definition

$$
\rho = \rho(X,Y) = \frac{\text{Cov}[X,Y]}{\sqrt{\mathbb{V}[X]\mathbb{V}[Y]}} = \text{Cov}\left(\frac{X - \mathbb{E}[X]}{SD[X]},\frac{Y - \mathbb{E}[Y]}{SD[Y]}\right)
$$

- Covariance after dividing out the scales of the respective variables.
- Correlation properties:
	- $-1 < \rho < 1$
	- $|\rho(X, Y)| = 1$ if and only if X and Y are perfectly correlated with a deterministic linear relationship: $Y = a + bX$.

4/ Random vectors

• Can group r.v.s into **random vectors** $\mathbf{X} = (X_1, \dots, X_k)'$

- Can group r.v.s into **random vectors** $\mathbf{X} = (X_1, \dots, X_k)'$
	- $\, {\mathsf X}$ is a function from the sample space to \mathbb{R}^k

- Can group r.v.s into **random vectors** $\mathbf{X} = (X_1, \dots, X_k)'$
	- $\, {\mathsf X}$ is a function from the sample space to \mathbb{R}^k
	- \cdot x is now a length- k vector and potential value of X

- Can group r.v.s into **random vectors** $\mathbf{X} = (X_1, \dots, X_k)'$
	- $\, {\mathsf X}$ is a function from the sample space to \mathbb{R}^k
	- \cdot x is now a length- k vector and potential value of X
	- \cdot Generalizes all ideas from 2 variables to k
- Can group r.v.s into **random vectors** $\mathbf{X} = (X_1, \dots, X_k)'$
	- $\, {\mathsf X}$ is a function from the sample space to \mathbb{R}^k
	- \cdot x is now a length- k vector and potential value of X
	- \cdot Generalizes all ideas from 2 variables to k
- Joint distribution function: $F(\mathbf{x}) = \mathbb{P}(\mathbf{X} \leq \mathbf{x}) = \mathbb{P}(X_1 \leq x_1, \dots, X_k \leq x_k).$

- Can group r.v.s into **random vectors** $\mathbf{X} = (X_1, \dots, X_k)'$
	- $\, {\mathsf X}$ is a function from the sample space to \mathbb{R}^k
	- \cdot x is now a length- k vector and potential value of X
	- Generalizes all ideas from 2 variables to k
- Joint distribution function: $F(\mathbf{x}) = \mathbb{P}(\mathbf{X} \leq \mathbf{x}) = \mathbb{P}(X_1 \leq x_1, \dots, X_k \leq x_k).$
	- Discrete: joint p.m.f. $P(X = x)$.

- Can group r.v.s into **random vectors** $\mathbf{X} = (X_1, \dots, X_k)'$
	- $\, {\mathsf X}$ is a function from the sample space to \mathbb{R}^k
	- \cdot x is now a length- k vector and potential value of X
	- Generalizes all ideas from 2 variables to k
- Joint distribution function: $F(\mathbf{x}) = \mathbb{P}(\mathbf{X} \leq \mathbf{x}) = \mathbb{P}(X_1 \leq x_1, \dots, X_k \leq x_k).$
	- Discrete: joint p.m.f. $P(X = x)$.
	- Continuous: joint p.d.f.

$$
f(\mathbf{x}) = \frac{\partial^k}{\partial x_1 \cdots \partial x_k} F(\mathbf{x})
$$

- Can group r.v.s into **random vectors** $\mathbf{X} = (X_1, \dots, X_k)'$
	- $\, {\mathsf X}$ is a function from the sample space to \mathbb{R}^k
	- \cdot x is now a length- k vector and potential value of X
	- Generalizes all ideas from 2 variables to k
- Joint distribution function: $F(\mathbf{x}) = \mathbb{P}(\mathbf{X} \leq \mathbf{x}) = \mathbb{P}(X_1 \leq x_1, \dots, X_k \leq x_k).$
	- Discrete: joint p.m.f. $P(X = x)$.
	- Continuous: joint p.d.f.

$$
f(\mathbf{x}) = \frac{\partial^k}{\partial x_1 \cdots \partial x_k} F(\mathbf{x})
$$

• Expectation of a random vector is just the vector of expectations:

$$
\mathbb{E}[\mathbf{X}] = \left(\mathbb{E}[X_1], \mathbb{E}[X_2], \ldots, \mathbb{E}[X_k]\right)'
$$

Covariance matrices

• Covariance matrix generalizes (co)variance to this setting:

$$
\mathbb{V}[\mathbf{X}] = \mathbb{E}\left[(\mathbf{X}-\mathbb{E}[\mathbf{X}])(\mathbf{X}-\mathbb{E}[\mathbf{X}])'\right]
$$

Covariance matrices

• Covariance matrix generalizes (co)variance to this setting:

$$
\mathbb{V}[\mathbf{X}] = \mathbb{E}\left[(\mathbf{X} - \mathbb{E}[\mathbf{X}])(\mathbf{X} - \mathbb{E}[\mathbf{X}])'\right]
$$

• We usually write $\mathbb{V}[\mathbf{X}] = \mathbf{\Sigma}$ and it is a $k \times k$ **symmetric** matrix:

$$
\mathbf{\Sigma} = \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1k} \\ \sigma_{21} & \sigma_2^2 & \cdots & \sigma_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{k1} & \sigma_{k2} & \cdots & \sigma_k^2 \end{pmatrix}
$$

where, $\sigma_j^2 = \mathbb{V}[X_j]$ and $\sigma_{ij} = \text{Cov}(X_i, X_j)$.

Covariance matrices

• Covariance matrix generalizes (co)variance to this setting:

$$
\mathbb{V}[\mathbf{X}] = \mathbb{E}\left[(\mathbf{X} - \mathbb{E}[\mathbf{X}])(\mathbf{X} - \mathbb{E}[\mathbf{X}])'\right]
$$

• We usually write $\mathbb{V}[\mathsf{X}] = \Sigma$ and it is a $k \times k$ **symmetric** matrix:

$$
\mathbf{\Sigma} = \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1k} \\ \sigma_{21} & \sigma_2^2 & \cdots & \sigma_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{k1} & \sigma_{k2} & \cdots & \sigma_k^2 \end{pmatrix}
$$

where, $\sigma_j^2 = \mathbb{V}[X_j]$ and $\sigma_{ij} = \text{Cov}(X_i, X_j)$.

• Symmetric ($\Sigma = \Sigma'$) because Cov $(X_i, X_j) = \text{Cov}(X_j, X_i)$.

• Let $\mathbf{Z} = (Z_1, Z_2, \dots, Z_k)$ be i.i.d. $\mathcal{N}(0, 1)$. What is their joint distribution?

- Let $\mathbf{Z} = (Z_1, Z_2, \dots, Z_k)$ be i.i.d. $\mathcal{N}(0, 1)$. What is their joint distribution?
- For vector of values $\mathbf{z} = (z_1, z_2, \dots, z_k)^T$

$$
f(\mathbf{z}) = \frac{1}{(2\pi)^{k/2}} \exp\left(-\frac{\mathbf{z}'\mathbf{z}}{2}\right)
$$

- Let $\mathbf{Z} = (Z_1, Z_2, \dots, Z_k)$ be i.i.d. $\mathcal{N}(0, 1)$. What is their joint distribution?
- For vector of values $\mathbf{z} = (z_1, z_2, \dots, z_k)^T$

$$
f(\mathbf{z}) = \frac{1}{(2\pi)^{k/2}} \exp\left(-\frac{\mathbf{z}'\mathbf{z}}{2}\right)
$$

• Easy to see the mean/variance: $\mathbb{E}[\mathsf{Z}] = 0$ and $\mathbb{V}[\mathsf{Z}] = \mathsf{I}_k$.

- Let $\mathbf{Z} = (Z_1, Z_2, \dots, Z_k)$ be i.i.d. $\mathcal{N}(0, 1)$. What is their joint distribution?
- For vector of values $\mathbf{z} = (z_1, z_2, \dots, z_k)^T$

$$
f(\mathbf{z}) = \frac{1}{(2\pi)^{k/2}} \exp\left(-\frac{\mathbf{z}'\mathbf{z}}{2}\right)
$$

- Easy to see the mean/variance: $\mathbb{E}[\mathsf{Z}] = 0$ and $\mathbb{V}[\mathsf{Z}] = \mathsf{I}_k$.
	- I_k is the k by k identity matrix because $\mathbb{V}[Z_j]=1$ and Cov $(Z_i,Z_j)=0.$

Theorem

Theorem

If $X \in \mathbb{R}^k$ with $k \times 1$ expectation μ and $k \times k$ covariance matrix Σ , and A is a $q \times k$ matrix, then **AX** is a random vector with mean **Aµ** and covariance matrix **ΑΣΑ'**.

• Let $\mathsf{Z}\sim\mathcal{N}(0,\mathsf{I}_k)$ and $\mathsf{X}=\bm{\mu}+\mathsf{B}\mathsf{Z}$, where B is $q\times k$ then $\mathsf{X}\sim\mathcal{N}(\bm{\mu},\mathsf{B}\mathsf{B}')$

Theorem

- Let $\mathsf{Z}\sim\mathcal{N}(0,\mathsf{I}_k)$ and $\mathsf{X}=\bm{\mu}+\mathsf{B}\mathsf{Z}$, where B is $q\times k$ then $\mathsf{X}\sim\mathcal{N}(\bm{\mu},\mathsf{B}\mathsf{B}')$
	- μ : $q \times 1$ mean vector $\mathbb{E}[\mathsf{X}] = \mu$

Theorem

- Let $\mathsf{Z}\sim\mathcal{N}(0,\mathsf{I}_k)$ and $\mathsf{X}=\bm{\mu}+\mathsf{B}\mathsf{Z}$, where B is $q\times k$ then $\mathsf{X}\sim\mathcal{N}(\bm{\mu},\mathsf{B}\mathsf{B}')$
	- μ : $q \times 1$ mean vector $\mathbb{E}[\mathsf{X}] = \mu$
	- $V[X] = BB'$: $q \times q$ covariance matrix.

Theorem

- Let $\mathsf{Z}\sim\mathcal{N}(0,\mathsf{I}_k)$ and $\mathsf{X}=\bm{\mu}+\mathsf{B}\mathsf{Z}$, where B is $q\times k$ then $\mathsf{X}\sim\mathcal{N}(\bm{\mu},\mathsf{B}\mathsf{B}')$
	- μ : $q \times 1$ mean vector $\mathbb{E}[\mathsf{X}] = \mu$
	- $V[X] = BB'$: $q \times q$ covariance matrix.
- More generally, if $\mathsf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ then $\mathsf{Y} = \mathsf{a} + \mathsf{B} \mathsf{X} \sim \mathcal{N}(\mathsf{a} + \mathsf{B} \boldsymbol{\mu}, \mathsf{B} \boldsymbol{\Sigma} \mathsf{B}^{\prime})$

Properties of the multivariate normal

• If (X_1, X_2, X_3) are MVN, then (X_1, X_2) is also MVN.

Properties of the multivariate normal

- If (X_1, X_2, X_3) are MVN, then (X_1, X_2) is also MVN.
- If (X, Y) are multivariate normal with Cov $(X, Y) = 0$, then X and Y are independent.