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Where are we? Where are we going?

• Distributions of one variable: how to describe and summarize
uncertainty about one variable.

• Today: distributions of multiple variables to describe relationships
between variables.

• Later: use data to learn about probability distributions.
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Why multiple random variables?

1. How to measure the relationship between two variables 𝘟 and 𝘠 ?

2. What if we have many observations of the same variable, 𝘟𝟣, 𝘟𝟤, … , 𝘟𝘯?
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1/ Distributions of Multiple
Random Variables



Joint distributions
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• The joint distribution of two r.v.s, 𝘟 and 𝘠 , describes what pairs of
observations, (𝘹, 𝘺) are more likely than others.

• Shape of the joint distribution⇝ the relationship between 𝘟 and 𝘠
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Discrete r.v.s

Definition
The joint probability mass function (p.m.f.) of a pair of discrete r.v.s, (𝘟, 𝘠 )
describes the probability of any pair of values:

𝘱𝘟,𝘠 (𝘹, 𝘺) = ℙ(𝘟 = 𝘹, 𝘠 = 𝘺)

• Properties of a joint p.m.f.:

• 𝘱𝘟,𝘠 (𝘹, 𝘺) ≥ 𝟢 (probabilities can’t be negative)
• ∑𝘹 ∑𝘺 𝘱𝘟,𝘠 (𝘹, 𝘺) = 𝟣 (something must happen)
• ∑𝘹 is shorthand for sum over all possible values of 𝘟
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Example: Gay marriage and gender

Support Gay Oppose Gay
Marriage Marriage

𝘠 = 𝟣 𝘠 = 𝟢
Female 𝘟 = 𝟣 0.32 0.19
Male 𝘟 = 𝟢 0.29 0.20

• Joint p.m.f. can be summarized in a cross-tab:

• Each is the probability of that combination, 𝘱𝘟,𝘠 (𝘹, 𝘺)

• Probability that we randomly select a woman who supports gay
marriage?

𝘱𝘟,𝘠 (𝟣, 𝟣) = ℙ(𝘟 = 𝟣, 𝘠 = 𝟣) = 𝟢.𝟥𝟤
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Marginal distributions

• Can we get the distribution of just one of the r.v.s alone?

• Called the marginal distribution in this context.

• Computing marginal p.m.f. from the joint p.m.f.:

ℙ(𝘠 = 𝘺) = ∑
𝘹

ℙ(𝘟 = 𝘹, 𝘠 = 𝘺)

• Intuition: sum over the probability that 𝘠 = 𝘺 and 𝘟 = 𝘹 for all
possible values of 𝘹

• Called marginalizing out 𝘟 .
• Works because values of 𝘟 are disjoint.
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Example: marginals for gay marriage
Support Gay Oppose Gay

Marriage Marriage Marginal
𝘠 = 𝟣 𝘠 = 𝟢

Female 𝘟 = 𝟣 0.32 0.19
Male 𝘟 = 𝟢 0.29 0.20
Marginal

• What’s ℙ(𝘠 = 𝟣)?

• Probability that a man supports gay marriage plus the probability that a
woman supports gay marriage.

ℙ(𝘠 = 𝟣)

= ℙ(𝘟 = 𝟣, 𝘠 = 𝟣) + ℙ(𝘟 = 𝟢, 𝘠 = 𝟣) = 𝟢.𝟥𝟤 + 𝟢.𝟤𝟫 = 𝟢.𝟨𝟣

• Works for all marginals.
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Conditional p.m.f.
Definition
The conditional probability mass function or conditional p.m.f. of 𝘠
conditional on 𝘟 is

ℙ(𝘠 = 𝘺 ∣ 𝘟 = 𝘹) = ℙ(𝘟 = 𝘹, 𝘠 = 𝘺)
ℙ(𝘟 = 𝘹)

for all values 𝘹 s.t. ℙ(𝘟 = 𝘹) > 𝟢.

• This is a valid univariate probability distribution!

• 𝘗(𝘠 = 𝘺 ∣ 𝘟 = 𝘹) ≥ 𝟢 and ∑𝘺 ℙ(𝘠 = 𝘺 ∣ 𝘟 = 𝘹) = 𝟣

• Can define the conditional expectation of this p.m.f.:

𝘌[𝘠 ∣ 𝘟 = 𝘹] = ∑
𝘺

𝘺ℙ(𝘠 = 𝘺 ∣ 𝘟 = 𝘹)
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Example: conditionals for gay marriage

Support Gay Oppose Gay
Marriage Marriage Marginal

𝘠 = 𝟣 𝘠 = 𝟢
Female 𝘟 = 𝟣 0.32 0.19 0.51
Male 𝘟 = 𝟢 0.29 0.20 0.49
Marginal 0.61 0.39

• Probability of favoring gay marriage conditional on male?

ℙ(𝘠 = 𝟣 ∣ 𝘟 = 𝟢) = ℙ(𝘟 = 𝟢, 𝘠 = 𝟣)
ℙ(𝘟 = 𝟢) = 𝟢.𝟤𝟫

𝟢.𝟤𝟫 + 𝟢.𝟤𝟢 = 𝟢.𝟧𝟫𝟤
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Female 𝘟 = 𝟣 0.32 0.19 0.51
Male 𝘟 = 𝟢 0.29 0.20 0.49
Marginal 0.61 0.39

• Probability of favoring gay marriage conditional on male?
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Example: conditionals for gay marriage
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• Two values of 𝘟 ⇝ two univariate conditional distributions of 𝘠
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Bayes and LTP

• Bayes’ rule for r.v.s:

ℙ(𝘠 = 𝘺 ∣ 𝘟 = 𝘹) = ℙ(𝘟 = 𝘹 ∣ 𝘠 = 𝘺)ℙ(𝘠 = 𝘺)
ℙ(𝘟 = 𝘹)

• Law of total probability for r.v.s:

ℙ(𝘟 = 𝘹) = ∑
𝘺

ℙ(𝘟 = 𝘹 ∣ 𝘠 = 𝘺)ℙ(𝘠 = 𝘺)
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Joint c.d.f.s

Definition
For two r.v.s 𝘟 and 𝘠 , the joint cumulative distribution function or joint c.d.f.
𝘍𝘟,𝘠 (𝘹, 𝘺) is a function such that for finite values 𝘹 and 𝘺 ,

𝘍𝘟,𝘠 (𝘹, 𝘺) = ℙ(𝘟 ≤ 𝘹, 𝘠 ≤ 𝘺)

• Well-defined for discrete and continuous 𝘟 and 𝘠 .

• For discrete we simply have:

𝘍𝘟,𝘠 (𝘹, 𝘺) = ∑
𝘪≤𝘹

∑
𝘫≤𝘺

ℙ(𝘟 = 𝘪, 𝘠 = 𝘫)
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Continuous r.v.s

• One continuous r.v.: prob. of being in a subset of the real line.

𝘟

• Two continuous r.v.s: probability of being in some subset of the
2-dimensional plane.

𝘟

𝘠
𝘈
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Continuous joint p.d.f.

Definition
If two continuous r.v.s 𝘟 and 𝘠 with joint c.d.f. 𝘍𝘟,𝘠 , their joint p.d.f.
𝘧𝘟,𝘠 (𝘹, 𝘺) is the derivative of 𝘍𝘟,𝘠 with respect to 𝘹 and 𝘺 ,

𝘧𝘟,𝘠 (𝘹, 𝘺) = 𝜕𝟤

𝜕𝘹𝜕𝘺 𝘍𝘟,𝘠 (𝘹, 𝘺)

• Integrate over both dimensions to get the probability of a region:

ℙ((𝘟, 𝘠 ) ∈ 𝘈) = ∬
(𝘹,𝘺)∈𝘈

𝘧𝘟,𝘠 (𝘹, 𝘺)𝘥𝘹𝘥𝘺.

• {(𝘹, 𝘺) ∶ 𝘧𝘟,𝘠 (𝘹, 𝘺) > 𝟢} is called the support of the distribution.
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Properties of the joint p.d.f.

• Joint p.d.f. must meet the following conditions:

1. 𝘧𝘟,𝘠 (𝘹, 𝘺) ≥ 𝟢 for all values of (𝘹, 𝘺),

(nonnegative)
2. ∫∞

−∞ ∫∞
−∞ 𝘧𝘟,𝘠 (𝘹, 𝘺)𝘥𝘹𝘥𝘺 = 𝟣, (probabilities “sum” to 1)

• ℙ(𝘟 = 𝘹, 𝘠 = 𝘺) = 𝟢 for similar reasons as with single r.v.s.

16 / 40



Properties of the joint p.d.f.

• Joint p.d.f. must meet the following conditions:

1. 𝘧𝘟,𝘠 (𝘹, 𝘺) ≥ 𝟢 for all values of (𝘹, 𝘺),

(nonnegative)

2. ∫∞
−∞ ∫∞

−∞ 𝘧𝘟,𝘠 (𝘹, 𝘺)𝘥𝘹𝘥𝘺 = 𝟣, (probabilities “sum” to 1)

• ℙ(𝘟 = 𝘹, 𝘠 = 𝘺) = 𝟢 for similar reasons as with single r.v.s.

16 / 40



Properties of the joint p.d.f.

• Joint p.d.f. must meet the following conditions:

1. 𝘧𝘟,𝘠 (𝘹, 𝘺) ≥ 𝟢 for all values of (𝘹, 𝘺), (nonnegative)

2. ∫∞
−∞ ∫∞

−∞ 𝘧𝘟,𝘠 (𝘹, 𝘺)𝘥𝘹𝘥𝘺 = 𝟣, (probabilities “sum” to 1)

• ℙ(𝘟 = 𝘹, 𝘠 = 𝘺) = 𝟢 for similar reasons as with single r.v.s.

16 / 40



Properties of the joint p.d.f.

• Joint p.d.f. must meet the following conditions:

1. 𝘧𝘟,𝘠 (𝘹, 𝘺) ≥ 𝟢 for all values of (𝘹, 𝘺), (nonnegative)
2. ∫∞

−∞ ∫∞
−∞ 𝘧𝘟,𝘠 (𝘹, 𝘺)𝘥𝘹𝘥𝘺 = 𝟣,

(probabilities “sum” to 1)

• ℙ(𝘟 = 𝘹, 𝘠 = 𝘺) = 𝟢 for similar reasons as with single r.v.s.

16 / 40



Properties of the joint p.d.f.

• Joint p.d.f. must meet the following conditions:

1. 𝘧𝘟,𝘠 (𝘹, 𝘺) ≥ 𝟢 for all values of (𝘹, 𝘺), (nonnegative)
2. ∫∞

−∞ ∫∞
−∞ 𝘧𝘟,𝘠 (𝘹, 𝘺)𝘥𝘹𝘥𝘺 = 𝟣, (probabilities “sum” to 1)

• ℙ(𝘟 = 𝘹, 𝘠 = 𝘺) = 𝟢 for similar reasons as with single r.v.s.

16 / 40



Properties of the joint p.d.f.

• Joint p.d.f. must meet the following conditions:

1. 𝘧𝘟,𝘠 (𝘹, 𝘺) ≥ 𝟢 for all values of (𝘹, 𝘺), (nonnegative)
2. ∫∞

−∞ ∫∞
−∞ 𝘧𝘟,𝘠 (𝘹, 𝘺)𝘥𝘹𝘥𝘺 = 𝟣, (probabilities “sum” to 1)

• ℙ(𝘟 = 𝘹, 𝘠 = 𝘺) = 𝟢 for similar reasons as with single r.v.s.

16 / 40



Joint densities are 3D
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• 𝘟 and 𝘠 axes are on the “floor,” height is the value of 𝘧𝘟,𝘠 (𝘹, 𝘺).

• Remember 𝘧𝘟,𝘠 (𝘹, 𝘺) ≠ ℙ(𝘟 = 𝘹, 𝘠 = 𝘺).
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Probability = volume
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• ℙ((𝘟, 𝘠 ) ∈ 𝘈) = ∬(𝘹,𝘺)∈𝘈 𝘧𝘟,𝘠 (𝘹, 𝘺)𝘥𝘹𝘥𝘺

• Probability = volume above a specific region.
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Continuous marginal distributions

• We can recover the marginal PDF of one of the variables by integrating
over the distribution of the other variable:

𝘧𝘠 (𝘺) = ∫
∞

−∞
𝘧𝘟,𝘠 (𝘹, 𝘺)𝘥𝘹

• Works for either variable:

𝘧𝘟 (𝘹) = ∫
∞

−∞
𝘧𝘟,𝘠 (𝘹, 𝘺)𝘥𝘺
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Visualizing continuous marginals

y

x

z

• Marginal integrates (sums, basically) over other r.v.:

𝘧𝘠 (𝘺) = ∫
∞

−∞
𝘧𝘟,𝘠 (𝘹, 𝘺)𝘥𝘹

• Pile up/flatten all of the joint density onto a single dimension.
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Continuous conditional distributions
Definition
The conditional p.d.f. of a continuous random variable is

𝘧𝘠 |𝘟 (𝘺 |𝘹) = 𝘧𝘟,𝘠 (𝘹, 𝘺)
𝘧𝘟 (𝘹)

for all values 𝘹 s.t. 𝘧𝘟 (𝘹) > 𝟢.

• Implies

ℙ(𝘢 < 𝘠 < 𝘣|𝘟 = 𝘹) = ∫
𝘣

𝘢
𝘧𝘠 |𝘟 (𝘺 |𝘹)𝘥𝘺

• Based on the definition of the conditional p.m.f./p.d.f., we have the
following factorization:

𝘧𝘟,𝘠 (𝘹, 𝘺) = 𝘧𝘠 |𝘟 (𝘺 |𝘹)𝘧𝘟 (𝘹)
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Conditional distributions as slices

• 𝘧𝘠 |𝘟 (𝘺 |𝘹𝟢) is the conditional p.d.f. of 𝘠 when 𝘟 = 𝘹𝟢

• 𝘧𝘠 |𝘟 (𝘺 |𝘹𝟢) is proportional to joint p.d.f. along 𝘹𝟢: 𝘧𝘟,𝘠 (𝘺 , 𝘹𝟢)

• Normalize by dividing by 𝘧𝘟 (𝘹𝟢) to ensure proper p.d.f.
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Independence
Independence

Two r.v.s 𝘠 and 𝘟 are independent (which we write 𝘟 ⟂⟂ 𝘠 ) if for all sets 𝘈
and 𝘉:

ℙ(𝘟 ∈ 𝘈, 𝘠 ∈ 𝘉) = ℙ(𝘟 ∈ 𝘈)ℙ(𝘠 ∈ 𝘉)

• Knowing the value of 𝘟 gives us no information about the value of 𝘠 .

• If 𝘟 and 𝘠 are independent, then:

• 𝘧𝘟,𝘠 (𝘹, 𝘺) = 𝘧𝘟 (𝘹)𝘧𝘠 (𝘺) and 𝘱𝘟,𝘠 (𝘹, 𝘺) = 𝘱𝘟 (𝘹)𝘱𝘠 (𝘺) (joint is the product
of marginals)

• 𝘍𝘟,𝘠 (𝘹, 𝘺) = 𝘍𝘟 (𝘹)𝘍𝘠 (𝘺)
• 𝘧𝘠 |𝘟 (𝘺 |𝘹) = 𝘧𝘠 (𝘺) (conditional is the marginal)

• Conditional independence implies similar to conditional distributions:

ℙ(𝘟 ∈ 𝘈, 𝘠 ∈ 𝘉 ∣ 𝘡) = ℙ(𝘟 ∈ 𝘈 ∣ 𝘡)ℙ(𝘠 ∈ 𝘉 ∣ 𝘡)
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and 𝘉:

ℙ(𝘟 ∈ 𝘈, 𝘠 ∈ 𝘉) = ℙ(𝘟 ∈ 𝘈)ℙ(𝘠 ∈ 𝘉)

• Knowing the value of 𝘟 gives us no information about the value of 𝘠 .

• If 𝘟 and 𝘠 are independent, then:

• 𝘧𝘟,𝘠 (𝘹, 𝘺) = 𝘧𝘟 (𝘹)𝘧𝘠 (𝘺) and 𝘱𝘟,𝘠 (𝘹, 𝘺) = 𝘱𝘟 (𝘹)𝘱𝘠 (𝘺) (joint is the product
of marginals)

• 𝘍𝘟,𝘠 (𝘹, 𝘺) = 𝘍𝘟 (𝘹)𝘍𝘠 (𝘺)
• 𝘧𝘠 |𝘟 (𝘺 |𝘹) = 𝘧𝘠 (𝘺) (conditional is the marginal)

• Conditional independence implies similar to conditional distributions:
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2/ Expectations of Joint
Distributions



Properties of joint distributions

• Single r.v.: summarized 𝘧𝘟 (𝘹) with 𝔼[𝘟] and 𝕍[𝘟]

• With 2 r.v.s: how strong is the dependence is between 𝘟 and 𝘠 ?

• First: expectations over joint distributions.
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Expectations over multiple r.v.s

• 2-d LOTUS: take expectations over the joint distribution.

• With discrete 𝘟 and 𝘠 :

𝔼[𝘨(𝘟, 𝘠 )] = ∑
𝘹

∑
𝘺

𝘨(𝘹, 𝘺) 𝘱𝘟,𝘠 (𝘹, 𝘺)

• With continuous 𝘟 and 𝘠 :

𝔼[𝘨(𝘟, 𝘠 )] = ∫
𝘹

∫
𝘺

𝘨(𝘹, 𝘺) 𝘧𝘟,𝘠 (𝘹, 𝘺)𝘥𝘹𝘥𝘺

• Marginal expectations:

𝔼[𝘠 ] = ∑
𝘹

∑
𝘺

𝘺 𝘱𝘟,𝘠 (𝘹, 𝘺)
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Applying 2D LOTUS
Theorem
If 𝘟 and 𝘠 are independent r.v.s, then

𝔼[𝘟𝘠 ] = 𝔼[𝘟]𝔼[𝘠 ].

• Proof for discrete 𝘟 and 𝘠 :

𝔼[𝘟𝘠 ] = ∑
𝘹

∑
𝘺

𝘹𝘺 𝘧𝘟,𝘠 (𝘹, 𝘺)

= ∑
𝘹

∑
𝘺

𝘹𝘺 𝘧𝘟 (𝘹)𝘧𝘠 (𝘺)

= (∑
𝘹

𝘹 𝘧𝘟 (𝘹)) (∑
𝘺

𝘺 𝘧𝘠 (𝘺))

= 𝔼[𝘟]𝔼[𝘠 ]
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3/ Covariance and
Correlation



Why (in)dependence?

• Independence assumptions are everywhere in statistics.

• Each response in a poll is considered independent of all other
responses.

• In a randomized control trial, treatment assignment is independent of
background characteristics.

• Lack of independence is a blessing or a curse:

• Two variables not independent⇝ potentially interesting relationship.
• In observational studies, treatment assignment is usually not
independent of background characteristics.
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Defining covariance

• How do we measure the strength of the dependence between two r.v.?

Covariance
The covariance between two r.v.s, 𝘟 and 𝘠 is defined as:

Cov[𝘟 , 𝘠 ] = 𝔼[(𝘟 − 𝔼[𝘟])(𝘠 − 𝔼[𝘠 ])]

• How often do high values of 𝘟 occur with high values of 𝘠 ?

• Properties of covariances:

• Cov[𝘟 , 𝘠 ] = 𝔼[𝘟𝘠 ] − 𝔼[𝘟]𝔼[𝘠 ]
• If 𝘟 ⟂⟂ 𝘠 , then Cov[𝘟 , 𝘠 ] = 𝟢
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• Cov[𝘟 , 𝘠 ] = 𝔼[𝘟𝘠 ] − 𝔼[𝘟]𝔼[𝘠 ]
• If 𝘟 ⟂⟂ 𝘠 , then Cov[𝘟 , 𝘠 ] = 𝟢
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• Large values of 𝘟 tend to occur with large values of 𝘠 :

• (𝘟 − 𝔼[𝘟])(𝘠 − 𝔼[𝘠 ]) = (pos. num.) × (pos. num) = +
• Small values of 𝘟 tend to occur with small values of 𝘠 :

• (𝘟 − 𝔼[𝘟])(𝘠 − 𝔼[𝘠 ]) = (neg. num.) × (neg. num) = +

• If these dominate⇝ positive covariance.
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Properties of variances and covariances

Cov[𝘟 , 𝘠 ] = 𝔼[(𝘟 − 𝔼[𝘟])(𝘠 − 𝔼[𝘠 ])] = 𝔼[𝘟𝘠 ] − 𝔼[𝘟]𝔼[𝘠 ]

• Properties of covariances:

1. Cov[𝘟 , 𝘟] = 𝕍[𝘟]

2. Cov[𝘟 , 𝘠 ] = Cov[𝘠 , 𝘟]

3. Cov[𝘟 , 𝘤] = 𝟢 for any constant 𝘤

4. Cov[𝘢𝘟, 𝘠 ] = 𝘢Cov[𝘟 , 𝘠 ].

5. Cov[𝘟 + 𝘠 , 𝘡] = Cov[𝘟 , 𝘡 ] + Cov[𝘠 , 𝘡 ]

6. Cov[𝘟 + 𝘠 , 𝘡 + 𝘞 ] = Cov[𝘟 , 𝘡 ] + Cov[𝘠 , 𝘡 ] + Cov[𝘟 , 𝘞 ] + Cov[𝘠 , 𝘞 ]
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Covariances and variances

• Can now state a few more properties of variances.

• Variance of a sum:

𝕍[𝘟 + 𝘠 ] = 𝕍[𝘟] + 𝕍[𝘠 ] + 𝟤Cov[𝘟 , 𝘠 ]

• More generally for 𝘯 r.v.s 𝘟𝟣, … , 𝘟𝘯:

𝕍[𝘟𝟣 + ⋯ + 𝘟𝘯] = 𝕍[𝘟𝟣] + ⋯ + 𝕍[𝘟𝘯] + 𝟤 ∑
𝘪<𝘫

Cov(𝘟𝘪 , 𝘟𝘫)

• If 𝘟 and 𝘠 independent, 𝕍[𝘟 + 𝘠 ] = 𝕍[𝘟] + 𝕍[𝘠 ].

• Beware: 𝕍[𝘟 − 𝘠 ] = 𝕍[𝘟] + 𝕍[𝘠 ] as well.
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Zero covariance doesn’t imply independence

• We saw that 𝘟 ⟂⟂ 𝘠 ⇝ Cov[𝘟 , 𝘠 ] = 𝟢.

• Does Cov[𝘟 , 𝘠 ] = 𝟢 imply that 𝘟⟂⟂𝘠 ?

No!

• Counterexample: 𝘟 ∈ {−𝟣, 𝟢, 𝟣} with equal probability and 𝘠 = 𝘟 𝟤.

• Covariance is a measure of linear dependence, so it can miss
non-linear dependence.
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Correlation

• Correlation is a scale-free measure of linear dependence.

Definition
The correlation between two r.v.s 𝘟 and 𝘠 is defined as:

𝜌 = 𝜌(𝘟, 𝘠 ) = Cov[𝘟 , 𝘠 ]
√𝕍[𝘟]𝕍[𝘠 ]

= Cov(𝘟 − 𝔼[𝘟]
𝘚𝘋[𝘟] , 𝘠 − 𝔼[𝘠 ]

𝘚𝘋[𝘠 ] )

• Covariance after dividing out the scales of the respective variables.

• Correlation properties:

• −𝟣 ≤ 𝜌 ≤ 𝟣
• |𝜌(𝘟, 𝘠 )| = 𝟣 if and only if 𝘟 and 𝘠 are perfectly correlated with a
deterministic linear relationship: 𝘠 = 𝘢 + 𝘣𝘟 .
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4/ Random vectors



Multivariate random vectors
• Can group r.v.s into random vectors 𝗫 = (𝘟𝟣, … , 𝘟𝘬)′

• 𝗫 is a function from the sample space to ℝ𝘬

• 𝘅 is now a length-𝘬 vector and potential value of 𝗫
• Generalizes all ideas from 2 variables to 𝘬

• Joint distribution function: 𝘍(𝘅) = ℙ(𝗫 ≤ 𝘅) = ℙ(𝘟𝟣 ≤ 𝘹𝟣, … , 𝘟𝘬 ≤ 𝘹𝘬).

• Discrete: joint p.m.f. ℙ(𝗫 = 𝘅).
• Continuous: joint p.d.f.

𝘧 (𝘅) = 𝜕𝘬

𝜕𝘹𝟣 ⋯ 𝜕𝘹𝘬
𝘍(𝘅)

• Expectation of a random vector is just the vector of expectations:

𝔼[𝗫] = (𝔼[𝘟𝟣], 𝔼[𝘟𝟤], … , 𝔼[𝘟𝘬 ])′
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Covariance matrices

• Covariance matrix generalizes (co)variance to this setting:

𝕍[𝗫] = 𝔼 [(𝗫 − 𝔼[𝗫])(𝗫 − 𝔼[𝗫])′]

• We usually write 𝕍[𝗫] = 𝚺 and it is a 𝘬 × 𝘬 symmetric matrix:

𝚺 =
⎛⎜⎜⎜⎜⎜
⎝

𝜎𝟤
𝟣 𝜎𝟣𝟤 ⋯ 𝜎𝟣𝘬

𝜎𝟤𝟣 𝜎𝟤
𝟤 ⋯ 𝜎𝟤𝘬

⋮ ⋮ ⋱ ⋮
𝜎𝘬𝟣 𝜎𝘬𝟤 ⋯ 𝜎𝟤

𝘬

⎞⎟⎟⎟⎟⎟
⎠

where, 𝜎𝟤
𝘫 = 𝕍[𝘟𝘫 ] and 𝜎𝘪 𝘫 = Cov(𝘟𝘪 , 𝘟𝘫).

• Symmetric (𝚺 = 𝚺′) because Cov(𝘟𝘪 , 𝘟𝘫) = Cov(𝘟𝘫 , 𝘟𝘪 ).
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Multivariate standard normal distribution

• Let 𝗭 = (𝘡𝟣, 𝘡𝟤, … , 𝘡𝘬) be i.i.d. 𝒩(𝟢, 𝟣). What is their joint distribution?

• For vector of values 𝘇 = (𝘻𝟣, 𝘻𝟤, … , 𝘻𝘬)𝘛

𝘧 (𝘇) = 𝟣
(𝟤𝜋)𝘬/𝟤 exp(−𝘇′𝘇

𝟤 )

• Easy to see the mean/variance: 𝔼[𝗭] = 𝟢 and 𝕍[𝗭] = 𝗜𝘬 .

• 𝗜𝘬 is the 𝘬 by 𝘬 identity matrix because 𝕍[𝘡𝘫 ] = 𝟣 and Cov(𝘡𝘪 , 𝘡𝘫 ) = 𝟢.
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Linear transformations of random vectors

Theorem
If 𝗫 ∈ ℝ𝘬 with 𝘬 × 𝟣 expectation 𝝁 and 𝘬 × 𝘬 covariance matrix 𝚺, and 𝗔 is a
𝘲 × 𝘬 matrix, then 𝗔𝗫 is a random vector with mean 𝗔𝝁 and covariance
matrix 𝗔𝚺𝗔′.

• Let 𝗭 ∼ 𝒩(𝟢, 𝗜𝘬) and 𝗫 = 𝝁 + 𝗕𝗭, where 𝗕 is 𝘲 × 𝘬 then 𝗫 ∼ 𝒩(𝝁, 𝗕𝗕′)

• 𝝁: 𝘲 × 𝟣 mean vector 𝔼[𝗫] = 𝝁
• 𝕍[𝗫] = 𝗕𝗕′: 𝘲 × 𝘲 covariance matrix.

• More generally, if 𝗫 ∼ 𝒩(𝝁, 𝚺) then 𝗬 = 𝗮 + 𝗕𝗫 ∼ 𝒩(𝗮 + 𝗕𝝁, 𝗕𝚺𝗕′)
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Properties of the multivariate normal

• If (𝘟𝟣, 𝘟𝟤, 𝘟𝟥) are MVN, then (𝘟𝟣, 𝘟𝟤) is also MVN.

• If (𝘟, 𝘠 ) are multivariate normal with Cov(𝘟, 𝘠 ) = 𝟢, then 𝘟 and 𝘠 are
independent.
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