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Where are we? Where are we going?

• Last few weeks: discrete random variables.

• How to characterize uncertainty about data that takes on discrete
values.

• Learned how to define distributions (p.m.f., c.d.f.) and how to
summarize.

• Now: define the same ideas for r.v.s that can take on any real value.

• Why?

• Many variables are (approximately) real-valued: income, time, vote
shares, etc.

• Sample average of all variables are (approximately) real-valued.
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1/ Continuous
distributions



Continuous r.v.s

• Discrete r.v.: specify ℙ(𝘟 = 𝘹) for all possible values⇝ p.m.f.

• What if 𝘟 can take any value on any real value?

• Can we just specify ℙ(𝘟 = 𝘹) for all 𝘹?

• No! Proof by counterexample:

• Suppose ℙ(𝘟 = 𝘹) = 𝜀 for 𝘹 ∈ (𝟢, 𝟣) where 𝜀 is a very small number.
• What’s the probability of being between 0 and 1?
• There are an infinite number of real numbers between 0 and 1:

𝟢.𝟤𝟥𝟤𝟪𝟩𝟫𝟪𝟩𝟥 … 𝟢.𝟧𝟩𝟤𝟨𝟥𝟢𝟦𝟪𝟩𝟦𝟥 … 𝟢.𝟫𝟪𝟤𝟥𝟨𝟣𝟤𝟫𝟪𝟦 …

• Each one has probability 𝜀⇝ ℙ(𝘟 ∈ (𝟢, 𝟣)) = ∞ × 𝜀 = ∞

• But ℙ(𝘟 ∈ (𝟢, 𝟣)) must be less than 1! ⇝ ℙ(𝘟 = 𝘹) must be 0.
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Thought experiment: draw a random real value between 0 and 10. What’s the
probability that we draw a value that is exact equal to 𝜋?

3.1415926535 8979323846 2643383279 5028841971 6939937510 5820974944 5923078164

0628620899 8628034825 3421170679 8214808651 3282306647 0938446095 5058223172

5359408128 4811174502 8410270193 8521105559 6446229489 5493038196 4428810975

6659334461 2847564823 3786783165 2712019091 4564856692 3460348610 4543266482

1339360726 0249141273 7245870066 0631558817 4881520920 9628292540 9171536436

7892590360 0113305305 4882046652 1384146951 9415116094 3305727036 5759591953

0921861173 8193261179 3105118548 0744623799 6274956735 1885752724 8912279381

8301194912 9833673362 4406566430 8602139494 6395224737 1907021798 6094370277

0539217176 2931767523 8467481846 7669405132 0005681271 4526356082 7785771342

7577896091 7363717872 1468440901 2249534301 4654958537 1050792279 6892589235

4201995611 2129021960 8640344181 5981362977 4771309960 5187072113 4999999837

2978049951 0597317328 1609631859 5024459455 3469083026 4252230825 3344685035

2619311881 7101000313 7838752886 5875332083 8142061717 7669147303 5982534904

2875546873 1159562863 8823537875 9375195778 1857780532 1712268066 1300192787

6611195909 2164201989 3809525720 1065485863 2788659361 5338182796 8230301952

0353018529 6899577362 2599413891 2497217752 8347913151 5574857242 4541506959

5082953311 6861727855 8890750983 8175463746 4939319255 0604009277 0167113900

9848824012 8583616035 6370766010 4710181942 9555961989 4676783744...
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Probability density functions

Definition
A r.v., 𝘟 , is continuous if its c.d.f. 𝘍𝘟 (𝘹) = ℙ(𝘟 ≤ 𝘹) is a continuous function.

• Essentially: the c.d.f. of a continuous r.v. has no jumps:
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Why “continuous”?
• How does a continuous c.d.f. connect to ℙ(𝘟 = 𝘹)? Note:

ℙ(𝘟 = 𝘹) ≤ ℙ(𝘹 − 𝜖 < 𝘟 ≤ 𝘹) = 𝘍𝘟 (𝘹) − 𝘍𝘟 (𝘹 − 𝜖)

• But whe the c.d.f. is continuous we know that

ℙ(𝘟 = 𝘹) ≤ lim𝜖→𝟢
𝘍(𝘹) − 𝘍(𝘹 − 𝜖) = 𝟢

• Continuous c.d.f.s imply the “point probabilities” are 0. What to do?

• With discrete, we summed up the p.m.f. to get the c.d.f.

𝘍𝘟 (𝘹) = ℙ(𝘟 ≤ 𝘹) = ∑
𝘫 ∶𝘹𝘫 ≤𝘹

𝘱𝘟 (𝘹𝘫)

• For continuous r.v.s, we’ll replace the sum with an integral!

𝘍𝘟 (𝘹) = ℙ(𝘟 ≤ 𝘹) = ∫
𝘹

−∞
𝘧𝘟 (𝘵)𝘥𝘵
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ℙ(𝘟 = 𝘹) ≤ lim𝜖→𝟢
𝘍(𝘹) − 𝘍(𝘹 − 𝜖) = 𝟢

• Continuous c.d.f.s imply the “point probabilities” are 0. What to do?

• With discrete, we summed up the p.m.f. to get the c.d.f.

𝘍𝘟 (𝘹) = ℙ(𝘟 ≤ 𝘹) = ∑
𝘫 ∶𝘹𝘫 ≤𝘹

𝘱𝘟 (𝘹𝘫)

• For continuous r.v.s, we’ll replace the sum with an integral!

𝘍𝘟 (𝘹) = ℙ(𝘟 ≤ 𝘹) = ∫
𝘹

−∞
𝘧𝘟 (𝘵)𝘥𝘵

6 / 26



Why “continuous”?
• How does a continuous c.d.f. connect to ℙ(𝘟 = 𝘹)? Note:

ℙ(𝘟 = 𝘹) ≤ ℙ(𝘹 − 𝜖 < 𝘟 ≤ 𝘹) = 𝘍𝘟 (𝘹) − 𝘍𝘟 (𝘹 − 𝜖)

• But whe the c.d.f. is continuous we know that

ℙ(𝘟 = 𝘹) ≤ lim𝜖→𝟢
𝘍(𝘹) − 𝘍(𝘹 − 𝜖) = 𝟢

• Continuous c.d.f.s imply the “point probabilities” are 0. What to do?

• With discrete, we summed up the p.m.f. to get the c.d.f.

𝘍𝘟 (𝘹) = ℙ(𝘟 ≤ 𝘹) = ∑
𝘫 ∶𝘹𝘫 ≤𝘹

𝘱𝘟 (𝘹𝘫)

• For continuous r.v.s, we’ll replace the sum with an integral!

𝘍𝘟 (𝘹) = ℙ(𝘟 ≤ 𝘹) = ∫
𝘹

−∞
𝘧𝘟 (𝘵)𝘥𝘵

6 / 26



Probability density function
Definition
The probability density function of a continuous r.v. 𝘟 𝘧𝘟 (𝘹) is the function
that satisfies

𝘍𝘟 (𝘹) = ∫
𝘹

−∞
𝘧𝘟 (𝘵)𝘥𝘵, for all 𝘹.

• By the fund. theorem of calculus p.d.f. is the derivative of the c.d.f.:

𝘥
𝘥𝘹 𝘍𝘟 (𝘹) = 𝘧𝘟 (𝘹)

• Interval probabilities:

ℙ(𝘢 < 𝘟 < 𝘣) = ℙ(𝘟 ≤ 𝘣) − ℙ(𝘟 ≤ 𝘢) = 𝘍(𝘣) − 𝘍(𝘢) = ∫
𝘣

𝘢
𝘧𝘟 (𝘹)𝘥𝘹

• With continuous we don’t have to worry about < vs ≤.

• ℙ(𝘢 < 𝘟 < 𝘣) = ℙ(𝘢 < 𝘟 ≤ 𝘣) = ℙ(𝘢 ≤ 𝘟 < 𝘣) = ℙ(𝘢 ≤ 𝘟 ≤ 𝘣).
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The p.d.f.

-4 -2 0 2 4
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Logistic distribution (p.d.f.)

x

f(
x) P(0 < X < 2)

• ⇝ the probability of a region is the area under the p.d.f. for that region.

• Support of 𝘟 is all values such that 𝘧𝘟 (𝘹) > 𝟢.

• Properties of a valid p.d.f.:

• Nonnegative: 𝘧𝘟 (𝘹) > 𝟢
• Integrates to 1: ∫∞

−∞ 𝘧𝘟 (𝘹)𝘥𝘹 = 𝟣

• Important: 𝘧𝘟 (𝘹) can be bigger than 1!
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p.d.f. intuition: smoothed histogram
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• Intuition of a density:

𝘧 (𝘹𝟢)𝜀 ≈ ℙ(𝘟 ∈ (𝘹𝟢 − 𝜀/𝟤, 𝘹𝟢 + 𝜀/𝟤))
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Continuous uniform distribution

• Simple and really important continuous distribution: uniform.

• Intuitively, every equal-sized interval has the same probability.
• How can figure out the p.d.f. for such a distribution?

Definition
A continuous r.v. 𝘜 has a Uniform distribution on the interval (𝘢, 𝘣) if its p.d.f.
is

𝘧 (𝘹) =
⎧{
⎨{⎩

𝟣
𝘣−𝘢 for 𝘹 ∈ [𝘢, 𝘣]
𝟢 otherwise

• If (𝘤, 𝘥) is a subinterval of (𝘢, 𝘣) then ℙ(𝘜 ∈ (𝘤, 𝘥)) is proportional to
𝘤 − 𝘥

• Distribution of 𝘜 conditional on being in (𝘤, 𝘥) is Unif(𝘤, 𝘥).
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Uniform pdf and cdf
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• Location-scale transformation: Let 𝘜 ∼ Unif(𝘢, 𝘣). Then 𝘜 = 𝘤𝘜 + 𝘥 is
Unif(𝘤𝘢 + 𝘥, 𝘤𝘣 + 𝘥)

• Linear transformations of uniforms preserve the uniform distribution.
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2/ Expectation for
continuous r.v.s



Expectation for a continuous r.v.
• Expectation of a continuous r.v.:

𝔼[𝘟] = ∫
∞

−∞
𝘹𝘧𝘟 (𝘹)𝘥𝘹

• Unifying notation you may see: 𝔼[𝘟] = ∫∞
−∞ 𝘹𝘥𝘍(𝘹)

• Expectation of a uniform (0,1):

𝔼[𝘜] = (𝘢 + 𝘣)/𝟤

• LOTUS with continuous r.v.s: 𝔼[𝘨(𝘟)] = ∫∞
−∞ 𝘨(𝘹)𝘧𝘟 (𝘹)𝘥𝘹

• Variance of a continuous r.v.s:

𝕍[𝘟] = 𝔼[(𝘟 − 𝔼[𝘟])𝟤] = ∫
∞

−∞
(𝘹 − 𝔼[𝘟])𝟤𝘧𝘟 (𝘹)𝘥𝘹

• Linearity and other properties of 𝔼[] and 𝕍[] still hold!

• In particular, we still have 𝕍[𝘟] = 𝔼[𝘟 𝟤] − (𝔼[𝘟])𝟤
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• In particular, we still have 𝕍[𝘟] = 𝔼[𝘟 𝟤] − (𝔼[𝘟])𝟤
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Expectation of random circle areas
• Let 𝘙 ∼ Unif(𝟢, 𝟣) and 𝘈 be the area of the circle with radius 𝘙 .

• What are 𝔼[𝘈] and 𝕍[𝘈]?

• For expectation, use LOTUS!

𝔼[𝘈] = 𝔼[𝜋𝘙𝟤] = ∫
𝟣

𝟢
𝜋𝘳 𝟤𝘥𝘳

= (𝜋/𝟥)𝘳 𝟥∣
𝟣

𝟢

= (𝜋/𝟥) ⋅ 𝟣𝟥 − (𝜋/𝟥) ⋅ 𝟢𝟥 = (𝜋/𝟥)

• For variance, use 𝕍[𝘈] = 𝔼[𝘈𝟤] − (𝔼[𝘈])𝟤:

𝔼[𝘈𝟤] = 𝔼[𝜋𝟤𝘙𝟦] = ∫
𝟣

𝟢
𝜋𝟤𝘳 𝟦𝘥𝘳 = (𝜋𝟤/𝟧)𝘳 𝟧∣

𝟣

𝟢

= (𝜋𝟤/𝟧) ⋅ 𝟣𝟧 − (𝜋𝟤/𝟧) ⋅ 𝟢𝟧 = (𝜋𝟤/𝟧)

• ⇝ 𝕍[𝘈] = 𝟦𝜋𝟤/𝟦𝟧. Challenge: find the c.d.f. and p.d.f. of 𝘈
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𝔼[𝘈𝟤] = 𝔼[𝜋𝟤𝘙𝟦] = ∫
𝟣

𝟢
𝜋𝟤𝘳 𝟦𝘥𝘳 = (𝜋𝟤/𝟧)𝘳 𝟧∣

𝟣

𝟢

= (𝜋𝟤/𝟧) ⋅ 𝟣𝟧 − (𝜋𝟤/𝟧) ⋅ 𝟢𝟧 = (𝜋𝟤/𝟧)

• ⇝ 𝕍[𝘈] = 𝟦𝜋𝟤/𝟦𝟧. Challenge: find the c.d.f. and p.d.f. of 𝘈
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3/ Universality of the
uniform



Quantile function

• Inverse of the c.d.f. 𝘍 −𝟣 is called the quantile function

• 𝘍 −𝟣(𝛼) is the value of 𝘹 such that ℙ(𝘟 ≤ 𝘹) = 𝛼
• Takes probabilities as arguments!
• 𝘍 −𝟣(𝟢.𝟧) is the median, 𝘍 −𝟣(𝟢.𝟤𝟧) is the lower quartile, etc

• Intuition: exactly the same as percentiles on exams.

• You’ve probably used them before: confidence interval critical values.
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Quantile functions

-4 -2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0

x

F(
x)

15 / 26



Universality of the Uniform

• The Uniform distribution has a deep connection to all continuous r.v.s

1. Let 𝘜 ∼ Unif(𝟢, 𝟣) and 𝘟 = 𝘍 −𝟣(𝘜), then 𝘟 is an r.v. with c.d.f. 𝘍 .

2. If 𝘟 is an r.v. with c.d.f. 𝘍 , then 𝘍(𝘟) ∼ Unif(𝟢, 𝟣).

• Careful: 𝘍(𝘟) means plug the random variable into the c.d.f. as a
function.

• Not 𝘍(𝘟) ≠ ℙ(𝘟 ≤ 𝘟).
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4/ Normal distribution



Standard normal distribution

Definition
A continuous r.v. 𝘡 follows a standard normal distribution if its p.d.f. 𝜑 is
given as

𝜑(𝘻) = 𝟣√
𝟤𝜋 𝘦−𝘻𝟤/𝟤, −∞ < 𝘻 < ∞,

and we write this 𝘡 ∼ 𝒩(𝟢, 𝟣)

• Not immediately obvious, but tricky calculus will show ∫∞
−∞ 𝜑(𝘻) = 𝟣.

• Normal c.d.f. has no closed form solution, so written as:

Φ(𝘻) = ∫
𝘻

−∞

𝟣√
𝟤𝜋 𝘦−𝘵𝟤/𝟤𝘥𝘵

• Standard normal is mean zero, variance 1: 𝔼[𝘡] = 𝟢, 𝕍[𝘡 ] = 𝟣.
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The normal distribution
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• Deeply symmetric:

• p.d.f. is symmetric: 𝜑(𝘻) = 𝜑(−𝘻)
• Tail areas are symmetric Φ(𝘻) = 𝟣 − Φ(−𝘻)
• 𝘡 and −𝘡 are both 𝒩(𝟢, 𝟣)
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General normal distribution
Defintion
If 𝘡 ∼ 𝒩(𝟢, 𝟣) then

𝘟 = 𝜇 + 𝜎𝘡

follows the normal distribution with mean 𝜇 and variance 𝜎 𝟤, written
𝘟 ∼ 𝒩(𝜇, 𝜎 𝟤).

• We can move back to a standard normal through standardization:

𝘟 − 𝜇
𝜎 ∼ 𝒩(𝟢, 𝟣).

• c.d.f.: Φ((𝘹 − 𝜇)/𝜎)

• p.d.f.:

𝘧𝘟 (𝘹) = 𝟣
𝜎√

𝟤𝜋 exp{−(𝘹 − 𝜇)𝟤

𝟤𝜎 𝟤 }
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Properties of normals and sums

• If 𝘟𝟣 ∼ 𝒩(𝜇𝟣, 𝜎𝟤
𝟣) and 𝘟𝟤 ∼ 𝒩(𝜇𝟤, 𝜎𝟤

𝟤) and 𝘟𝟣 ⟂⟂ 𝘟𝟤,

𝘟𝟣 + 𝘟𝟤 ∼ 𝒩(𝜇𝟣 + 𝜇𝟤, 𝜎𝟤
𝟣 + 𝜎𝟤

𝟤)

• Cramer’s theorem: if 𝘟𝟣 ⟂⟂ 𝘟𝟤 and 𝘟𝟣 + 𝘟𝟤 is normal, then 𝘟𝟣 and 𝘟𝟤 are
normal.
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Using pnorm

• pnorm() evaluates the c.d.f. of the normal:
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pnorm(q = 0, mean = 0, sd = 1)

## [1] 0.5
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Using pnorm

• pnorm() evaluates the c.d.f. of the normal:
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0.0
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0.2

0.3

0.4
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0.6

x

f(
x)

pnorm(q = 0, mean = 0, sd = 1) - pnorm(q = -1, mean = 0, sd = 1)

## [1] 0.341

23 / 26



Empirical Rule for the Normal Distribution
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68%
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• If 𝘡 ∼ 𝒩(𝟢, 𝟣), then the following are roughly true:

• Roughly 68% of the distribution of 𝘡 is between -1 and 1.
• Roughly 95% of the distribution of 𝘡 is between -2 and 2.
• Roughly 99.7% of the distribution of 𝘡 is between -3 and 3.
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Chi-square distribution

Definition
Let 𝘝 = 𝘡 𝟤

𝟣 + ⋯ + 𝘡 𝟤
𝘯 where 𝘡𝟣, 𝘡𝟤, … , 𝘡𝘯 are i.i.d. 𝒩(𝟢, 𝟣). Then 𝘝 follows the

Chi-square distribution with 𝘯 degrees of freedom, written 𝘝 ∼ 𝜒𝟤
𝘯

• Why do we care? Sample variance of normal r.v.s 𝘟𝟣, … , 𝘟𝘯 i.i.d.
𝘕(𝜇, 𝜎 𝟤):

𝘴𝟤 = 𝟣
𝘯 − 𝟣

𝘯
∑
𝘪=𝟣

(𝘟𝘪 − 𝘟)𝟤 (𝘯 − 𝟣)𝘴𝟤

𝜎 𝟤 ∼ 𝜒𝟤
𝘯−𝟣

• Furthermore, 𝘟 𝘯 is independent of 𝘴𝟤/𝜎 𝟤.
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Chi-square distribution with 𝘯 degrees of freedom, written 𝘝 ∼ 𝜒𝟤
𝘯

• Why do we care? Sample variance of normal r.v.s 𝘟𝟣, … , 𝘟𝘯 i.i.d.
𝘕(𝜇, 𝜎 𝟤):

𝘴𝟤 = 𝟣
𝘯 − 𝟣

𝘯
∑
𝘪=𝟣

(𝘟𝘪 − 𝘟)𝟤 (𝘯 − 𝟣)𝘴𝟤

𝜎 𝟤 ∼ 𝜒𝟤
𝘯−𝟣

• Furthermore, 𝘟 𝘯 is independent of 𝘴𝟤/𝜎 𝟤.
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Student t distribution
Definition
If 𝘡 ∼ 𝒩(𝟢, 𝟣) and 𝘝 ∼ 𝜒𝟤

𝘯 with 𝘡 ⟂⟂ 𝘝 , then

𝘛 = 𝘡
√𝘝 /𝘯

,

follows the student-t distribution with 𝘯 degrees of freedom, written 𝘛 ∼ 𝘵𝘯.

• Important result for the normal model: if 𝘟𝟣, … , 𝘟𝘯 are i.i.d. 𝒩(𝜇, 𝜎 𝟤):

𝘛 = 𝘟 𝘯 − 𝜇
√𝘴𝟤/𝘯

∼ 𝘵𝘯−𝟣

• Properties of the 𝘵 distribution:

• Symmetric and mean-zero like the standard normal.
• Fatter tails than the normal.
• Converges to 𝒩(𝟢, 𝟣) as 𝘯 → ∞
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Symmetry of iid continuous r.v.s

Proposition

Let 𝘟𝟣, … , 𝘟𝘯 be i.i.d. from a continuous distribution. Then,

ℙ(𝘟𝘢𝟣
< 𝘟𝘢𝟤

< ⋯ < 𝘟𝘢𝘯
) = 𝟣

𝘯!
for any permutation 𝘢𝟣, 𝘢𝟤, … , 𝘢𝘯 of 𝟣, 𝟤, … , 𝘯.

• All orderings of continuous i.i.d. r.v.s are equally likely.

• Doesn’t necessarily hold for discrete r.v.s
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