4: Expectation

Fall 2023

Matthew Blackwell

Gov 2002 (Harvard)

Where are we? Where are we going?

- We've defined random variables and their distributions.
- Distributions give full information about the probabilities of an r.v.
- Today: begin to summarize distributions with a few numbers.

Motivation: causal effects

- Consider a hypothetical intervention such as "door-to-door get out the vote."
- We'll define two potential outcomes:
- $Y_{i}(1)$: whether person i would vote (1) or not (0) if they received canvassing.
- $Y_{i}(0)$: whether person i would vote (1) or not (0) if they didn't receive the canvassing.
- The individual causal effect of canvassing then is

$$
\tau_{i}=Y_{i}(1)-Y_{i}(0)
$$

- We can think of $Y_{i}(1)$ and $Y_{i}(0)$ as rvs and so τ_{i} is a rv as well.
- How should we summarize the distribution of causal effects?

1/ Definition of
Expectation

How can we summarize distributions?

- Probability distributions describe the uncertainty about r.v.s.
- Can we summarize probability distributions?
- Question: What is the difference between these two p.m.f.s? How might we summarize this difference?
$\operatorname{Bin}(10,0.5)$

$\operatorname{Bin}(10,0.25)$

Goals for summarizing

1. Central tendency: where the center of the distribution is.

- We'll focus on the mean/expectation.

2. Spread: how spread out the distribution is around the center.

- We'll focus on the variance/standard deviation.
- These are population parameters so we don't get to observe them.
- We won't get to observe them...
- but we'll use our sample to learn about them

Two ways to calculate averages

- Calculate the average of: $\{1,1,1,3,4,4,5,5\}$

$$
\frac{1+1+1+3+4+4+5+5}{8}=3
$$

- Alternative way to calculate average based on frequency weights:

$$
1 \times \frac{3}{8}+3 \times \frac{1}{8}+4 \times \frac{2}{8}+5 \times \frac{2}{8}=3
$$

- Each value times how often that value occurs in the data.
- We'll use this intuition to create an average/mean for r.v.s.

Expectation

Definition

The expected value (or expectation or mean) of a discrete r.v. X with possible values, x_{1}, x_{2}, \ldots is

$$
\mathbb{E}[X]=\sum_{j=1}^{\infty} x_{j} \mathbb{P}\left(X=x_{j}\right)
$$

- Weighted average of the values of the r.v. weighted by the probability of each value occurring.
- $E[X]$ is a constant!
- Example: $X \sim \operatorname{Bern}(p)$, then $\mathbb{E}[X]=1 p+0(1-p)=p$.
- If X and Y have the same distribution, then $\mathbb{E}[X]=\mathbb{E}[Y]$.
- Converse isn't true!

Example - number of treated units

- Randomized experiment with 3 units. X is number of treated units.

x	$p_{X}(x)$	$x p_{X}(x)$
0	$1 / 8$	0
1	$3 / 8$	$3 / 8$
2	$3 / 8$	$6 / 8$
3	$1 / 8$	$3 / 8$

- Calculate the expectation of X :

$$
\begin{aligned}
\mathbb{E}[X] & =\sum_{j=1}^{k} x_{j} \mathbb{P}\left(X=x_{j}\right) \\
& =0 \cdot \mathbb{P}(X=0)+1 \cdot \mathbb{P}(X=1)+2 \cdot \mathbb{P}(X=2)+3 \cdot \mathbb{P}(X=3) \\
& =0 \cdot \frac{1}{8}+1 \cdot \frac{3}{8}+2 \cdot \frac{3}{8}+3 \cdot \frac{1}{8}=\frac{12}{8}=1.5
\end{aligned}
$$

Expectation as balancing point

$\operatorname{Bin}(10,0.5)$

$\operatorname{Bin}(10,0.25)$

2/ Linearity of Expectations

Properties of the expected value

- Often want to derive expectation of transformations of other r.v.s
- Possible for linear functions because expectation is linear:

$$
\begin{aligned}
\mathbb{E}[X+Y] & =\mathbb{E}[X]+\mathbb{E}[Y] \\
\mathbb{E}[a X] & =a \mathbb{E}[X] \quad \text { if } a \text { is a constant }
\end{aligned}
$$

- True even if X and Y are dependent!
- But this isn't always true for nonlinear functions:
- $\mathbb{E}[g(X)] \neq g(\mathbb{E}[X])$ unless $g(\cdot)$ is a linear function.
- $\mathbb{E}[X Y] \neq \mathbb{E}[X] \mathbb{E}[Y]$ unless X and Y are independent.

Expectation of a binomial

- Let $X \sim \operatorname{Bin}(n, p)$, what's $\mathbb{E}[X]$? Could just plug in formula:

$$
\mathbb{E}[X]=\sum_{k=0}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k}=? ?
$$

- Use the story of the binomial as a sum of n Bernoulli $X_{i} \sim \operatorname{Bern}(p)$

$$
X=X_{1}+\cdots+X_{n}
$$

- Use linearity:

$$
\mathbb{E}[X]=\mathbb{E}\left[X_{1}+\cdots+X_{n}\right]=\mathbb{E}\left[X_{1}\right]+\cdots+\mathbb{E}\left[X_{n}\right]=n p
$$

Expectation of the sample mean

- Let X_{1}, \ldots, X_{n} be identically distributed with $\mathbb{E}\left[X_{i}\right]=\mu$.
- Define the sample mean to be $\bar{X}_{n}=n^{-1} \sum_{i=1}^{n} X_{i}$.
- \bar{X} is a r.v.!
- We can find the expectation of the sample mean using linearity:

$$
\mathbb{E}\left[\bar{X}_{n}\right]=\mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} X_{i}\right]=\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]=\frac{1}{n} n \mu=\mu
$$

- Intuition: on average, the sample mean is equal to the population mean.

Monotonicity of expectations

- Expectations don't have to be in the support of the data.
- $X \sim \operatorname{Bern}(p)$ has $E[X]=p$ which isn't 0 or 1 .
- But it must be between the highest and lowest possible value of an r.v.
- If $\mathbb{P}(X \geq c)=1$, then $\mathbb{E}[X] \geq c$.
- If $\mathbb{P}(X \leq c)=1$, then $\mathbb{E}[X] \leq c$.
- Useful application of linearity: expectation is monotone.
- If $X \geq Y$ with probability 1 , then $\mathbb{E}(X) \geq \mathbb{E}(Y)$.

St. Petersburg Paradox

- Game of chance: stranger pays you $\$ 2^{X}$ where X is the number of flips with a fair coin until the first heads.
- Probability of reaching $X=k$ is:

$$
\mathbb{P}(X=k)=\mathbb{P}\left(T_{1} \cap T_{2} \cap \cdots \cap T_{k-1} \cap H_{k}\right)=\mathbb{P}\left(T_{1}\right) \mathbb{P}\left(T_{2}\right) \cdots \mathbb{P}\left(T_{k-1}\right) \mathbb{P}\left(H_{k}\right)=\frac{1}{2^{k}}
$$

- How much would you be willing to pay to play the game?
- Let payout be $Y=2^{X}$, we want $\mathbb{E}[Y]$:

$$
\mathbb{E}[Y]=\sum_{k=1}^{\infty} 2^{k} \frac{1}{2^{k}}=\sum_{k=1}^{\infty} 1=\infty
$$

- Two ways to resolve the "paradox":
- No infinite money: max payout of 2^{40} (around a trillion) $\rightsquigarrow \mathbb{E}[Y]=41$
- Risk avoidance/concave utility $U=Y^{1 / 2} \rightsquigarrow \mathbb{E}[U(Y)] \approx 2.41$

Undefined expectations*

- We saw $\mathbb{E}[X]$ can be infinite, but it can also be undefined.
- Example: X takes 2^{k} and -2^{k} each with prob 2^{-k-1}.

$$
\mathbb{E}[X]=\sum_{k=1}^{\infty} 2^{k} 2^{-k-1}-\sum_{k=1}^{\infty} 2^{k} 2^{-k-1}=\sum_{k=1}^{\infty} \frac{1}{2}-\sum_{k=1}^{\infty} \frac{1}{2}=\infty-\infty
$$

- Often, both of these are assumed away by assuming $\mathbb{E}[|X|]<\infty$ which implies $\mathbb{E}[X]$ exists and is finite.

3/ Indicator Variables

Indicator variables/fundamental bridge

- The probability of an event is equal to the expectation of its indicator:

$$
\mathbb{P}(A)=\mathbb{E}[0(A)]
$$

- Fundamental bridge between probability and expectation
- Makes it easy to prove probability results like Bonferroni's inequality

$$
\mathbb{P}\left(A_{1} \cup \cdots \cup A_{n}\right) \leq \mathbb{P}\left(A_{1}\right)+\cdots+\mathbb{P}\left(A_{n}\right)
$$

- Use the fact that $\mathbb{\square}\left(A_{1} \cup \cdots \cup A_{n}\right) \leq \square\left(A_{1}\right)+\cdots+\square\left(A_{n}\right)$ and then take expectations.

Using indicators to find expectations

- Suppose we are assigning n units to k treatments and all possibilities equally likely. What is the expected number of treatment conditions without any units?
- Use indicators! $I_{j}=1$ if j th condition is empty. So $I_{1}+\cdots+I_{k}$ is the number of empty conditions.

$$
\begin{aligned}
\mathbb{E}\left[I_{j}\right] & =\mathbb{P}(\text { cond } j \text { empty }) \\
& =\mathbb{P}(\{\text { unit } 1 \text { not in cond } j\} \cap \cdots \cap\{\text { unit } n \text { not in cond } j\}) \\
& =\mathbb{P}(\{\text { unit } 1 \text { not in cond } j\}) \cdots \mathbb{P}(\{\text { unit } n \text { not in cond } j\}) \\
& =\left(1-\frac{1}{k}\right)^{n}
\end{aligned}
$$

- Thus, we have $\mathbb{E}\left[\sum_{j} I_{j}\right]=k(1-1 / k)^{n}$.

4/ Variance

Variance

- The variance measures the spread of the distribution:

$$
\mathbb{V}[X]=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]
$$

- Could also use $\mathbb{E}[|X-\mathbb{E}[X]|]$ but more clunky as a function.
- Weighted average of the squared distances from the mean.
- Larger deviations (+ or -) \rightsquigarrow higher variance
- The standard deviation is the (positive) square root of the variance:

$$
S D(X)=\sqrt{V[X]}
$$

- Useful equivalent representation of the variance:

$$
\mathbb{V}[X]=\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2}
$$

LOTUS

- How do we calculate $\mathbb{E}\left[X^{2}\right]$ since it's nonlinear?

Defintion

The Law of the Unconscious Statistician, or LOTUS, states that if $g(X)$ is a function of a discrete random variable, then

$$
\mathbb{E}[g(X)]=\sum_{x} g(x) \mathbb{P}(X=x)
$$

- Example: $\mathbb{E}\left[X^{2}\right]$ where $X \sim \operatorname{Bin}(n, p)$.

$$
\begin{aligned}
\mathbb{E}[X] & =\sum_{k=0}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k} \\
\mathbb{E}\left[X^{2}\right] & =\sum_{k=0}^{n} k^{2}\binom{n}{k} p^{k}(1-p)^{n-k}
\end{aligned}
$$

Example - number of treated units

- Use LOTUS to calculate the variance for a discrete r.v.:

$$
\mathbb{V}[X]=\sum_{j=1}^{k}\left(x_{j}-\mathbb{E}[X]\right)^{2} \mathbb{P}\left(X=x_{j}\right)
$$

x	$p_{X}(x)$	$x-\mathbb{E}[X]$	$(x-\mathbb{E}[X])^{2}$
0	$1 / 8$	-1.5	2.25
1	$3 / 8$	-0.5	0.25
2	$3 / 8$	0.5	0.25
3	$1 / 8$	1.5	2.25

- Let's go back to the number of treated units to figure out the variance of the number of treated units:

$$
\begin{aligned}
\mathbb{V}[X] & =\sum_{j=1}^{k}\left(x_{j}-\mathbb{E}[X]\right)^{2} p_{X}\left(x_{j}\right) \\
& =(-1.5)^{2} \times \frac{1}{8}+(-0.5)^{2} \times \frac{3}{8}+0.5^{2} \times \frac{3}{8}+1.5^{2} \times \frac{1}{8} \\
& =2.25 \times \frac{1}{8}+0.25 \times \frac{3}{8}+0.25 \times \frac{3}{8}+2.25 \times \frac{1}{8}=0.75
\end{aligned}
$$

Properties of variances

1. $\mathbb{V}[X+c]=\mathbb{V}[X]$ for any constant c.
2. If a is a constant, $\mathbb{V}[a X]=a^{2} \mathbb{V}[X]$.
3. If X and Y are independent, then $V[X+Y]=\mathbb{V}[X]+\mathbb{V}[Y]$.

- But this doesn't hold for dependent r.v.s

4. $\mathbb{V}[X] \geq 0$ with equality holding only if X is a constant, $\mathbb{P}(X=b)=1$.

Binomial variance

- Clunky to use LOTUS to calculate variances. Other ways?
- Use stories and indicator variables!
- $X \sim \operatorname{Bin}(n, p)$ is equivalent to $X_{1}+\cdots+X_{n}$ where $X_{i} \sim \operatorname{Bern}(p)$
- Variance of a Bernoulli:

$$
\mathbb{V}\left[X_{i}\right]=\mathbb{E}\left[X_{i}^{2}\right]-\left(\mathbb{E}\left[X_{i}\right]\right)^{2}=p-p^{2}=p(1-p)
$$

- (Used $X_{i}^{2}=X_{i}$ for indicator variables)
- Binomials are the sum of independent Bernoulli r.v.s so:

$$
\mathbb{V}[X]=\mathbb{V}\left[X_{1}+\cdots+X_{n}\right]=\mathbb{V}\left[X_{1}\right]+\cdots+\mathbb{V}\left[X_{n}\right]=n p(1-p)
$$

Variance of the sample mean

- Let X_{1}, \ldots, X_{n} be i.i.d. with $\mathbb{E}\left[X_{i}\right]=\mu$ and $\mathbb{V}\left[X_{i}\right]=\sigma^{2}$
- Earlier we saw that $\mathbb{E}\left[\bar{X}_{n}\right]=\mu$, what about $\mathbb{V}\left[\bar{X}_{n}\right]$?
- We can apply the rules of variances:

$$
\mathbb{V}\left[\bar{X}_{n}\right]=\mathbb{V}\left[\frac{1}{n} \sum_{i=1}^{n} X_{i}\right]=\frac{1}{n^{2}} \sum_{i=1}^{n} \mathbb{V}\left[X_{i}\right]=\frac{1}{n^{2}} n \sigma^{2}=\frac{\sigma^{2}}{n}
$$

- Note: we needed independence and identically distributed for this.
- $S D\left(\bar{X}_{n}\right)=\sigma / \sqrt{n}$
- Under i.i.d. sampling we know the expectation and variance of \bar{X}_{n} without any other assumptions about the distribution of the X_{i} !
- We don't know what distribution it takes though!

5/ Inequalities

Inequalities

- Bounds are very important establishing unknown probabilities.
- Also very helpful in establishing limit results later on.
- Remember that $\mathbb{E}[a+b X]=a+b \mathbb{E}[X]$ is linear, but $\mathbb{E}[g(X)] \neq g(\mathbb{E}[X])$ for nonlinear functions.
- Can we relate those? Yes for convex and concave functions.

Concave and convex

Convex

Concave

Jensen's inequality

Jensen's inequality
Let X be a r.v. Then, we have

$$
\begin{array}{ll}
\mathbb{E}[g(X)] \geq g(\mathbb{E}[X]) & \text { if } g \text { is convex } \\
\mathbb{E}[g(X)] \leq g(\mathbb{E}[X]) & \text { if } g \text { is concave }
\end{array}
$$

with equality only holding if g is linear.

- Makes proving variance positive simple.
- $g(x)=x^{2}$ is convex, so $\mathbb{E}\left[X^{2}\right] \geq(\mathbb{E}[X])^{2}$.
- Allows us to easily reason about complicated functions:
- $\mathbb{E}[|X|] \geq|\mathbb{E}[X]|$
- $\mathbb{E}[1 / X] \geq 1 / \mathbb{E}[X]$
- $\mathbb{E}[\log (X)] \leq \log (\mathbb{E}[X])$

6/ Poisson Distribution

Definition

An r.v. X has the Poisson distribution with parameter $\lambda>0$, written $X \sim \operatorname{Pois}(\lambda)$ if the p.m.f. of X is:

$$
\mathbb{P}(X=k)=\frac{e^{-\lambda} \lambda^{k}}{k!}, \quad k=0,1,2, \ldots
$$

- One more discrete distribution is very popular, especially for counts.
- Number of contributions a candidate for office receives in a day.
- Key calculus fact that makes this a valid p.m.f.: $\sum_{k=0}^{\infty} \lambda^{k} / k!=e^{\lambda}$.

Poisson properties

- A Poisson r.v. $X \sim \operatorname{Pois}(\lambda)$ has an unusual property:

$$
\mathbb{E}[X]=\mathbb{V}[X]=\lambda
$$

- The sum of independent Poisson r.v.s is Poisson:

$$
X \sim \operatorname{Pois}\left(\lambda_{1}\right) \quad Y \sim \operatorname{Pois}\left(\lambda_{2}\right) \quad \Longrightarrow \quad X+Y \sim \operatorname{Pois}\left(\lambda_{1}+\lambda_{2}\right)
$$

- If $X \sim \operatorname{Bin}(n, p)$ with n large and p small, then X is approx $\operatorname{Pois}(n p)$.

