Fall 2023

Matthew Blackwell

Gov 2002 (Harvard)

Where are we? Where are we going?

• We've defined random variables and their distributions.

Where are we? Where are we going?

- · We've defined random variables and their distributions.
- Distributions give full information about the probabilities of an r.v.

Where are we? Where are we going?

- · We've defined random variables and their distributions.
- Distributions give full information about the probabilities of an r.v.
- · Today: begin to summarize distributions with a few numbers.

 Consider a hypothetical intervention such as "door-to-door get out the vote."

- Consider a hypothetical intervention such as "door-to-door get out the vote."
- We'll define two potential outcomes:

- Consider a hypothetical intervention such as "door-to-door get out the vote."
- We'll define two potential outcomes:
 - Y_i(1): whether person i would vote (1) or not (0) if they received canvassing.

- Consider a hypothetical intervention such as "door-to-door get out the vote."
- We'll define two potential outcomes:
 - Y_i(1): whether person i would vote (1) or not (0) if they received canvassing.
 - Y_i(0): whether person i would vote (1) or not (0) if they didn't receive the
 canvassing.

- Consider a hypothetical intervention such as "door-to-door get out the vote."
- We'll define two potential outcomes:
 - Y_i(1): whether person i would vote (1) or not (0) if they received canvassing.
 - $Y_i(0)$: whether person i would vote (1) or not (0) if they **didn't receive** the canvassing.
- · The individual causal effect of canvassing then is

$$\tau_i = Y_i(1) - Y_i(0)$$

- Consider a hypothetical intervention such as "door-to-door get out the vote."
- We'll define two potential outcomes:
 - Y_i(1): whether person i would vote (1) or not (0) if they received canvassing.
 - $Y_i(0)$: whether person i would vote (1) or not (0) if they **didn't receive** the canvassing.
- · The individual causal effect of canvassing then is

$$\tau_i = Y_i(1) - Y_i(0)$$

• We can think of $Y_i(1)$ and $Y_i(0)$ as rvs and so τ_i is a rv as well.

- Consider a hypothetical intervention such as "door-to-door get out the vote."
- We'll define two potential outcomes:
 - Y_i(1): whether person i would vote (1) or not (0) if they received canvassing.
 - $Y_i(0)$: whether person i would vote (1) or not (0) if they **didn't receive** the canvassing.
- · The individual causal effect of canvassing then is

$$\tau_i = Y_i(1) - Y_i(0)$$

- We can think of $Y_i(1)$ and $Y_i(0)$ as rvs and so τ_i is a rv as well.
- How should we summarize the distribution of causal effects?

1/ Definition of Expectation

• Probability distributions describe the uncertainty about r.v.s.

- Probability distributions describe the uncertainty about r.v.s.
- Can we summarize probability distributions?

- Probability distributions describe the uncertainty about r.v.s.
- · Can we summarize probability distributions?
- **Question**: What is the difference between these two p.m.f.s? How might we summarize this difference?

- Probability distributions describe the uncertainty about r.v.s.
- · Can we summarize probability distributions?
- **Question**: What is the difference between these two p.m.f.s? How might we summarize this difference?

1. **Central tendency**: where the center of the distribution is.

- 1. Central tendency: where the center of the distribution is.
 - · We'll focus on the mean/expectation.

- 1. Central tendency: where the center of the distribution is.
 - We'll focus on the mean/expectation.
- 2. **Spread**: how spread out the distribution is around the center.

- 1. Central tendency: where the center of the distribution is.
 - · We'll focus on the mean/expectation.
- 2. **Spread**: how spread out the distribution is around the center.
 - We'll focus on the variance/standard deviation.

- 1. Central tendency: where the center of the distribution is.
 - We'll focus on the mean/expectation.
- 2. **Spread**: how spread out the distribution is around the center.
 - We'll focus on the variance/standard deviation.
 - These are **population parameters** so we don't get to observe them.

- 1. **Central tendency**: where the center of the distribution is.
 - We'll focus on the mean/expectation.
- 2. **Spread**: how spread out the distribution is around the center.
 - We'll focus on the variance/standard deviation.
 - These are **population parameters** so we don't get to observe them.
 - · We won't get to observe them...

- 1. Central tendency: where the center of the distribution is.
 - We'll focus on the mean/expectation.
- 2. **Spread**: how spread out the distribution is around the center.
 - We'll focus on the variance/standard deviation.
 - These are **population parameters** so we don't get to observe them.
 - · We won't get to observe them...
 - · but we'll use our sample to learn about them

• Calculate the average of: $\{1,1,1,3,4,4,5,5\}$

• Calculate the average of: {1,1,1,3,4,4,5,5}

$$\frac{1+1+1+3+4+4+5+5}{8} = 3$$

• Calculate the average of: {1, 1, 1, 3, 4, 4, 5, 5}

$$\frac{1+1+1+3+4+4+5+5}{8} = 3$$

Alternative way to calculate average based on frequency weights:

• Calculate the average of: {1, 1, 1, 3, 4, 4, 5, 5}

$$\frac{1+1+1+3+4+4+5+5}{8} = 3$$

Alternative way to calculate average based on frequency weights:

$$1 \times \frac{3}{8} + 3 \times \frac{1}{8} + 4 \times \frac{2}{8} + 5 \times \frac{2}{8} = 3$$

• Calculate the average of: {1,1,1,3,4,4,5,5}

$$\frac{1+1+1+3+4+4+5+5}{8} = 3$$

Alternative way to calculate average based on frequency weights:

$$1 \times \frac{3}{8} + 3 \times \frac{1}{8} + 4 \times \frac{2}{8} + 5 \times \frac{2}{8} = 3$$

· Each value times how often that value occurs in the data.

• Calculate the average of: {1,1,1,3,4,4,5,5}

$$\frac{1+1+1+3+4+4+5+5}{8} = 3$$

Alternative way to calculate average based on frequency weights:

$$1 \times \frac{3}{8} + 3 \times \frac{1}{8} + 4 \times \frac{2}{8} + 5 \times \frac{2}{8} = 3$$

- Each value times how often that value occurs in the data.
- We'll use this intuition to create an average/mean for r.v.s.

Definition

$$\mathbb{E}[X] = \sum_{j=1}^{\infty} x_j \mathbb{P}(X = x_j)$$

Definition

The **expected value** (or **expectation** or **mean**) of a discrete r.v. X with possible values, $x_1, x_2, ...$ is

$$\mathbb{E}[X] = \sum_{j=1}^{\infty} x_j \mathbb{P}(X = x_j)$$

 Weighted average of the values of the r.v. weighted by the probability of each value occurring.

Definition

$$\mathbb{E}[X] = \sum_{j=1}^{\infty} x_j \mathbb{P}(X = x_j)$$

- Weighted average of the values of the r.v. weighted by the probability of each value occurring.
 - E[X] is a constant!

Definition

$$\mathbb{E}[X] = \sum_{j=1}^{\infty} x_j \mathbb{P}(X = x_j)$$

- Weighted average of the values of the r.v. weighted by the probability of each value occurring.
 - E[X] is a constant!
- Example: $X \sim \operatorname{Bern}(p)$, then $\mathbb{E}[X] =$

Definition

$$\mathbb{E}[X] = \sum_{j=1}^{\infty} x_j \mathbb{P}(X = x_j)$$

- Weighted average of the values of the r.v. weighted by the probability of each value occurring.
 - E[X] is a constant!
- Example: $X \sim \text{Bern}(p)$, then $\mathbb{E}[X] = 1p + 0(1-p) = p$.

Definition

$$\mathbb{E}[X] = \sum_{j=1}^{\infty} x_j \mathbb{P}(X = x_j)$$

- Weighted average of the values of the r.v. weighted by the probability of each value occurring.
 - E[X] is a constant!
- Example: $X \sim \text{Bern}(p)$, then $\mathbb{E}[X] = 1p + 0(1-p) = p$.
- If *X* and *Y* have the same distribution, then $\mathbb{E}[X] = \mathbb{E}[Y]$.

Definition

$$\mathbb{E}[X] = \sum_{j=1}^{\infty} x_j \mathbb{P}(X = x_j)$$

- Weighted average of the values of the r.v. weighted by the probability of each value occurring.
 - *E*[*X*] is a constant!
- Example: $X \sim \text{Bern}(p)$, then $\mathbb{E}[X] = 1p + 0(1-p) = p$.
- If *X* and *Y* have the same distribution, then $\mathbb{E}[X] = \mathbb{E}[Y]$.
 - · Converse isn't true!

• Randomized experiment with 3 units. X is number of treated units.

X	$p_X(x)$
0	1/8
1	3/8
2	3/8
3	1/8

• Randomized experiment with 3 units. X is number of treated units.

X	$p_X(x)$
0	1/8
1	3/8
2	3/8
3	1/8

• Calculate the expectation of X:

• Randomized experiment with 3 units. X is number of treated units.

$$\begin{array}{c|cc}
x & p_X(x) \\
\hline
0 & 1/8 \\
1 & 3/8 \\
2 & 3/8 \\
3 & 1/8
\end{array}$$

Calculate the expectation of X:

$$\mathbb{E}[X] = \sum_{j=1}^{k} x_j \mathbb{P}(X = x_j)$$

• Randomized experiment with 3 units. X is number of treated units.

$$\begin{array}{c|cc}
x & p_X(x) \\
\hline
0 & 1/8 \\
1 & 3/8 \\
2 & 3/8 \\
3 & 1/8
\end{array}$$

• Calculate the expectation of X:

$$\mathbb{E}[X] = \sum_{j=1}^{k} x_j \mathbb{P}(X = x_j)$$

= $0 \cdot \mathbb{P}(X = 0) + 1 \cdot \mathbb{P}(X = 1) + 2 \cdot \mathbb{P}(X = 2) + 3 \cdot \mathbb{P}(X = 3)$

• Randomized experiment with 3 units. X is number of treated units.

X	$p_X(x)$	$xp_X(x)$
0	1/8	0
1	3/8	3/8
2	3/8	6/8
3	1/8	3/8

Calculate the expectation of X:

$$\mathbb{E}[X] = \sum_{j=1}^{k} x_j \mathbb{P}(X = x_j)$$

$$= 0 \cdot \mathbb{P}(X = 0) + 1 \cdot \mathbb{P}(X = 1) + 2 \cdot \mathbb{P}(X = 2) + 3 \cdot \mathbb{P}(X = 3)$$

$$= 0 \cdot \frac{1}{8} + 1 \cdot \frac{3}{8} + 2 \cdot \frac{3}{8} + 3 \cdot \frac{1}{8}$$

• Randomized experiment with 3 units. X is number of treated units.

$$\begin{array}{c|cccc} x & p_X(x) & xp_X(x) \\ \hline 0 & 1/8 & 0 \\ 1 & 3/8 & 3/8 \\ 2 & 3/8 & 6/8 \\ 3 & 1/8 & 3/8 \\ \end{array}$$

Calculate the expectation of X:

$$\mathbb{E}[X] = \sum_{j=1}^{k} x_j \mathbb{P}(X = x_j)$$

$$= 0 \cdot \mathbb{P}(X = 0) + 1 \cdot \mathbb{P}(X = 1) + 2 \cdot \mathbb{P}(X = 2) + 3 \cdot \mathbb{P}(X = 3)$$

$$= 0 \cdot \frac{1}{8} + 1 \cdot \frac{3}{8} + 2 \cdot \frac{3}{8} + 3 \cdot \frac{1}{8} = \frac{12}{8} = 1.5$$

Expectation as balancing point

2/ Linearity of Expectations

• Often want to derive expectation of transformations of other r.v.s

- · Often want to derive expectation of transformations of other r.v.s
- · Possible for linear functions because expectation is linear:

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

$$\mathbb{E}[aX] = a\mathbb{E}[X] \qquad \text{if a is a constant}$$

- Often want to derive expectation of **transformations** of other r.v.s
- · Possible for linear functions because expectation is linear:

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

$$\mathbb{E}[aX] = a\mathbb{E}[X]$$
 if a is a constant

• True even if X and Y are dependent!

- · Often want to derive expectation of transformations of other r.v.s
- Possible for linear functions because expectation is linear:

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

$$\mathbb{E}[aX] = a\mathbb{E}[X]$$
 if a is a constant

- True even if X and Y are dependent!
- But this isn't always true for nonlinear functions:

- Often want to derive expectation of **transformations** of other r.v.s
- Possible for linear functions because expectation is linear:

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

$$\mathbb{E}[aX] = a\mathbb{E}[X]$$
 if a is a constant

- True even if X and Y are dependent!
- But this isn't always true for nonlinear functions:
 - $\mathbb{E}[g(X)] \neq g(\mathbb{E}[X])$ unless $g(\cdot)$ is a linear function.

- Often want to derive expectation of transformations of other r.v.s
- Possible for linear functions because expectation is linear:

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

$$\mathbb{E}[aX] = a\mathbb{E}[X] \qquad \text{if a is a constant}$$

- True even if X and Y are dependent!
- But this isn't always true for nonlinear functions:
 - $\mathbb{E}[g(X)] \neq g(\mathbb{E}[X])$ unless $g(\cdot)$ is a linear function.
 - $\mathbb{E}[XY] \neq \mathbb{E}[X]\mathbb{E}[Y]$ unless X and Y are independent.

Expectation of a binomial

• Let $X \sim \text{Bin}(n, p)$, what's $\mathbb{E}[X]$? Could just plug in formula:

$$\mathbb{E}[X] = \sum_{k=0}^{n} k \binom{n}{k} p^{k} (1-p)^{n-k} = ??$$

Expectation of a binomial

• Let $X \sim \text{Bin}(n, p)$, what's $\mathbb{E}[X]$? Could just plug in formula:

$$\mathbb{E}[X] = \sum_{k=0}^{n} k \binom{n}{k} p^{k} (1-p)^{n-k} = ??$$

• Use the story of the binomial as a sum of n Bernoulli $X_i \sim \text{Bern}(p)$

$$X = X_1 + \cdots + X_n$$

Expectation of a binomial

• Let $X \sim \text{Bin}(n, p)$, what's $\mathbb{E}[X]$? Could just plug in formula:

$$\mathbb{E}[X] = \sum_{k=0}^{n} k \binom{n}{k} p^{k} (1-p)^{n-k} = ??$$

• Use the story of the binomial as a sum of n Bernoulli $X_i \sim \text{Bern}(p)$

$$X = X_1 + \cdots + X_n$$

· Use linearity:

$$\mathbb{E}[X] = \mathbb{E}[X_1 + \dots + X_n] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_n] = np$$

• Let X_1, \dots, X_n be identically distributed with $\mathbb{E}[X_i] = \mu$.

- Let X_1, \dots, X_n be identically distributed with $\mathbb{E}[X_i] = \mu$.
- Define the **sample mean** to be $\overline{X}_n = n^{-1} \sum_{i=1}^n X_i$.

- Let X_1, \dots, X_n be identically distributed with $\mathbb{E}[X_i] = \mu$.
- Define the **sample mean** to be $\overline{X}_n = n^{-1} \sum_{i=1}^n X_i$.
 - \overline{X} is a r.v.!

- Let X_1, \dots, X_n be identically distributed with $\mathbb{E}[X_i] = \mu$.
- Define the **sample mean** to be $\overline{X}_n = n^{-1} \sum_{i=1}^n X_i$.
 - \overline{X} is a r.v.!
- We can find the expectation of the sample mean using linearity:

$$\mathbb{E}[\overline{X}_n] = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n}\sum_{i=1}^n \mathbb{E}[X_i] = \frac{1}{n}n\mu = \mu$$

- Let X_1, \dots, X_n be identically distributed with $\mathbb{E}[X_i] = \mu$.
- Define the **sample mean** to be $\overline{X}_n = n^{-1} \sum_{i=1}^n X_i$.
 - \overline{X} is a r.v.!
- We can find the expectation of the sample mean using linearity:

$$\mathbb{E}[\overline{X}_n] = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n}\sum_{i=1}^n \mathbb{E}[X_i] = \frac{1}{n}n\mu = \mu$$

 Intuition: on average, the sample mean is equal to the population mean.

• Expectations don't have to be in the support of the data.

- Expectations don't have to be in the support of the data.
 - $X \sim \text{Bern}(p)$ has E[X] = p which isn't 0 or 1.

- Expectations don't have to be in the support of the data.
 - $X \sim \text{Bern}(p)$ has E[X] = p which isn't 0 or 1.
- But it must be between the highest and lowest possible value of an r.v.

- Expectations don't have to be in the support of the data.
 - $X \sim \text{Bern}(p)$ has E[X] = p which isn't 0 or 1.
- But it must be between the highest and lowest possible value of an r.v.
 - If $\mathbb{P}(X \ge c) = 1$, then $\mathbb{E}[X] \ge c$.

- Expectations don't have to be in the support of the data.
 - $X \sim \text{Bern}(p)$ has E[X] = p which isn't 0 or 1.
- But it must be between the highest and lowest possible value of an r.v.
 - If $\mathbb{P}(X \ge c) = 1$, then $\mathbb{E}[X] \ge c$.
 - If $\mathbb{P}(X \leq c) = 1$, then $\mathbb{E}[X] \leq c$.

- Expectations don't have to be in the support of the data.
 - $X \sim \text{Bern}(p)$ has E[X] = p which isn't 0 or 1.
- But it must be between the highest and lowest possible value of an r.v.
 - If $\mathbb{P}(X \ge c) = 1$, then $\mathbb{E}[X] \ge c$.
 - If $\mathbb{P}(X \leq c) = 1$, then $\mathbb{E}[X] \leq c$.
- Useful application of linearity: expectation is **monotone**.

- Expectations don't have to be in the support of the data.
 - $X \sim \text{Bern}(p)$ has E[X] = p which isn't 0 or 1.
- But it must be between the highest and lowest possible value of an r.v.
 - If $\mathbb{P}(X \ge c) = 1$, then $\mathbb{E}[X] \ge c$.
 - If $\mathbb{P}(X \leq c) = 1$, then $\mathbb{E}[X] \leq c$.
- Useful application of linearity: expectation is **monotone**.
 - If $X \ge Y$ with probability 1, then $\mathbb{E}(X) \ge \mathbb{E}(Y)$.

• Game of chance: stranger pays you $\$2^X$ where X is the number of flips with a fair coin until the first heads.

- Game of chance: stranger pays you $\$2^X$ where X is the number of flips with a fair coin until the first heads.
 - Probability of reaching X = k is:

$$\mathbb{P}(X=k) = \mathbb{P}(T_1 \cap T_2 \cap \dots \cap T_{k-1} \cap H_k) = \mathbb{P}(T_1)\mathbb{P}(T_2) \dots \mathbb{P}(T_{k-1})\mathbb{P}(H_k) = \frac{1}{2^k}$$

- Game of chance: stranger pays you $\$2^X$ where X is the number of flips with a fair coin until the first heads.
 - Probability of reaching X = k is:

$$\mathbb{P}(X=k) = \mathbb{P}(T_1 \cap T_2 \cap \dots \cap T_{k-1} \cap H_k) = \mathbb{P}(T_1)\mathbb{P}(T_2) \dots \mathbb{P}(T_{k-1})\mathbb{P}(H_k) = \frac{1}{2^k}$$

How much would you be willing to pay to play the game?

- Game of chance: stranger pays you $\$2^X$ where X is the number of flips with a fair coin until the first heads.
 - Probability of reaching X = k is:

$$\mathbb{P}(X=k) = \mathbb{P}(T_1 \cap T_2 \cap \dots \cap T_{k-1} \cap H_k) = \mathbb{P}(T_1)\mathbb{P}(T_2) \dots \mathbb{P}(T_{k-1})\mathbb{P}(H_k) = \frac{1}{2^k}$$

- How much would you be willing to pay to play the game?
- Let payout be $Y = 2^X$, we want $\mathbb{E}[Y]$:

$$\mathbb{E}[Y] = \sum_{k=1}^{\infty} 2^k \frac{1}{2^k} = \sum_{k=1}^{\infty} 1 = \infty$$

- Game of chance: stranger pays you \$2^X where X is the number of flips with a fair coin until the first heads.
 - Probability of reaching X = k is:

$$\mathbb{P}(X=k) = \mathbb{P}(T_1 \cap T_2 \cap \dots \cap T_{k-1} \cap H_k) = \mathbb{P}(T_1)\mathbb{P}(T_2) \dots \mathbb{P}(T_{k-1})\mathbb{P}(H_k) = \frac{1}{2^k}$$

- How much would you be willing to pay to play the game?
- Let payout be $Y = 2^X$, we want $\mathbb{E}[Y]$:

$$\mathbb{E}[Y] = \sum_{k=1}^{\infty} 2^k \frac{1}{2^k} = \sum_{k=1}^{\infty} 1 = \infty$$

• Two ways to resolve the "paradox":

- Game of chance: stranger pays you $\$2^X$ where X is the number of flips with a fair coin until the first heads.
 - Probability of reaching X = k is:

$$\mathbb{P}(X=k) = \mathbb{P}(T_1 \cap T_2 \cap \dots \cap T_{k-1} \cap H_k) = \mathbb{P}(T_1)\mathbb{P}(T_2) \dots \mathbb{P}(T_{k-1})\mathbb{P}(H_k) = \frac{1}{2^k}$$

- How much would you be willing to pay to play the game?
- Let payout be $Y = 2^X$, we want $\mathbb{E}[Y]$:

$$\mathbb{E}[Y] = \sum_{k=1}^{\infty} 2^k \frac{1}{2^k} = \sum_{k=1}^{\infty} 1 = \infty$$

- Two ways to resolve the "paradox":
 - No infinite money: max payout of 2^{40} (around a trillion) $\rightsquigarrow \mathbb{E}[Y] = 41$

- Game of chance: stranger pays you $\$2^X$ where X is the number of flips with a fair coin until the first heads.
 - Probability of reaching X = k is:

$$\mathbb{P}(X=k) = \mathbb{P}(T_1 \cap T_2 \cap \dots \cap T_{k-1} \cap H_k) = \mathbb{P}(T_1)\mathbb{P}(T_2) \dots \mathbb{P}(T_{k-1})\mathbb{P}(H_k) = \frac{1}{2^k}$$

- · How much would you be willing to pay to play the game?
- Let payout be $Y = 2^X$, we want $\mathbb{E}[Y]$:

$$\mathbb{E}[Y] = \sum_{k=1}^{\infty} 2^{k} \frac{1}{2^{k}} = \sum_{k=1}^{\infty} 1 = \infty$$

- Two ways to resolve the "paradox":
 - No infinite money: max payout of 2^{40} (around a trillion) $\rightsquigarrow \mathbb{E}[Y] = 41$
 - Risk avoidance/concave utility $U = Y^{1/2} \leadsto \mathbb{E}[U(Y)] \approx 2.41$

Undefined expectations*

• We saw $\mathbb{E}[X]$ can be infinite, but it can also be undefined.

Undefined expectations*

- We saw $\mathbb{E}[X]$ can be infinite, but it can also be undefined.
- Example: X takes 2^k and -2^k each with prob 2^{-k-1} .

$$\mathbb{E}[X] = \sum_{k=1}^{\infty} 2^k 2^{-k-1} - \sum_{k=1}^{\infty} 2^k 2^{-k-1} = \sum_{k=1}^{\infty} \frac{1}{2} - \sum_{k=1}^{\infty} \frac{1}{2} = \infty - \infty$$

Undefined expectations*

- We saw $\mathbb{E}[X]$ can be infinite, but it can also be undefined.
- Example: X takes 2^k and -2^k each with prob 2^{-k-1} .

$$\mathbb{E}[X] = \sum_{k=1}^{\infty} 2^k 2^{-k-1} - \sum_{k=1}^{\infty} 2^k 2^{-k-1} = \sum_{k=1}^{\infty} \frac{1}{2} - \sum_{k=1}^{\infty} \frac{1}{2} = \infty - \infty$$

• Often, both of these are assumed away by assuming $\mathbb{E}[|X|] < \infty$ which implies $\mathbb{E}[X]$ exists and is finite.

3/ Indicator Variables

• The probability of an event is equal to the expectation of its indicator:

$$\mathbb{P}(A) = \mathbb{E}[\mathbb{I}(A)]$$

• The probability of an event is equal to the expectation of its indicator:

$$\mathbb{P}(A) = \mathbb{E}[\mathbb{I}(A)]$$

· Fundamental bridge between probability and expectation

• The probability of an event is equal to the expectation of its indicator:

$$\mathbb{P}(A) = \mathbb{E}[\mathbb{I}(A)]$$

- · Fundamental bridge between probability and expectation
- · Makes it easy to prove probability results like Bonferroni's inequality

$$\mathbb{P}(A_1 \cup \dots \cup A_n) \leq \mathbb{P}(A_1) + \dots + \mathbb{P}(A_n)$$

• The probability of an event is equal to the expectation of its indicator:

$$\mathbb{P}(A) = \mathbb{E}[\mathbb{I}(A)]$$

- · Fundamental bridge between probability and expectation
- · Makes it easy to prove probability results like Bonferroni's inequality

$$\mathbb{P}(A_1 \cup \dots \cup A_n) \leq \mathbb{P}(A_1) + \dots + \mathbb{P}(A_n)$$

• Use the fact that $\mathbb{I}(A_1\cup\cdots\cup A_n)\leq \mathbb{I}(A_1)+\cdots+\mathbb{I}(A_n)$ and then take expectations.

Using indicators to find expectations

 Suppose we are assigning n units to k treatments and all possibilities equally likely. What is the expected number of treatment conditions without any units?

Using indicators to find expectations

- Suppose we are assigning n units to k treatments and all possibilities equally likely. What is the expected number of treatment conditions without any units?
- Use indicators! $I_j=1$ if jth condition is empty. So $I_1+\cdots+I_k$ is the number of empty conditions.

```
\begin{split} \mathbb{E}[I_j] &= \mathbb{P}(\mathsf{cond}\,j\,\mathsf{empty}) \\ &= \mathbb{P}(\{\mathsf{unit}\,\mathsf{1}\,\mathsf{not}\,\mathsf{in}\,\mathsf{cond}\,j\}\cap\cdots\cap\{\mathsf{unit}\,n\,\mathsf{not}\,\mathsf{in}\,\mathsf{cond}\,j\}) \\ &= \mathbb{P}(\{\mathsf{unit}\,\mathsf{1}\,\mathsf{not}\,\mathsf{in}\,\mathsf{cond}\,j\})\cdots\mathbb{P}(\{\mathsf{unit}\,n\,\mathsf{not}\,\mathsf{in}\,\mathsf{cond}\,j\}) \\ &= \left(1 - \frac{1}{k}\right)^n \end{split}
```

Using indicators to find expectations

- Suppose we are assigning n units to k treatments and all possibilities equally likely. What is the expected number of treatment conditions without any units?
- Use indicators! $I_j=1$ if jth condition is empty. So $I_1+\cdots+I_k$ is the number of empty conditions.

$$\begin{split} \mathbb{E}[I_j] &= \mathbb{P}(\mathsf{cond}\,j\,\mathsf{empty}) \\ &= \mathbb{P}(\{\mathsf{unit}\,1\,\mathsf{not}\,\mathsf{in}\,\mathsf{cond}\,j\}\cap \dots \cap \{\mathsf{unit}\,n\,\mathsf{not}\,\mathsf{in}\,\mathsf{cond}\,j\}) \\ &= \mathbb{P}(\{\mathsf{unit}\,1\,\mathsf{not}\,\mathsf{in}\,\mathsf{cond}\,j\}) \dots \mathbb{P}(\{\mathsf{unit}\,n\,\mathsf{not}\,\mathsf{in}\,\mathsf{cond}\,j\}) \\ &= \left(1 - \frac{1}{k}\right)^n \end{split}$$

• Thus, we have $\mathbb{E}\left[\sum_{i}I_{j}\right]=k(1-1/k)^{n}.$

4/ Variance

$$\mathbb{V}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

• The **variance** measures the spread of the distribution:

$$\mathbb{V}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

• Could also use $\mathbb{E}[|X - \mathbb{E}[X]|]$ but more clunky as a function.

$$\mathbb{V}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

- Could also use $\mathbb{E}[|X \mathbb{E}[X]|]$ but more clunky as a function.
- Weighted average of the squared distances from the mean.

$$\mathbb{V}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

- Could also use $\mathbb{E}[|X \mathbb{E}[X]|]$ but more clunky as a function.
- · Weighted average of the squared distances from the mean.
 - Larger deviations $(+ \text{ or } -) \rightsquigarrow \text{ higher variance}$

$$\mathbb{V}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

- Could also use $\mathbb{E}[|X \mathbb{E}[X]|]$ but more clunky as a function.
- · Weighted average of the squared distances from the mean.
 - Larger deviations (+ or −) → higher variance
- The **standard deviation** is the (positive) square root of the variance:

$$SD(X) = \sqrt{\mathbb{V}[X]}$$

• The **variance** measures the spread of the distribution:

$$\mathbb{V}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

- Could also use $\mathbb{E}[|X \mathbb{E}[X]|]$ but more clunky as a function.
- · Weighted average of the squared distances from the mean.
 - Larger deviations (+ or −) → higher variance
- The **standard deviation** is the (positive) square root of the variance:

$$SD(X) = \sqrt{\mathbb{V}[X]}$$

Useful equivalent representation of the variance:

$$\mathbb{V}[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

LOTUS

• How do we calculate $\mathbb{E}[X^2]$ since it's nonlinear?

LOTUS

• How do we calculate $\mathbb{E}[X^2]$ since it's nonlinear?

Defintion

The **Law of the Unconscious Statistician**, or LOTUS, states that if g(X) is a function of a discrete random variable, then

$$\mathbb{E}[g(X)] = \sum_{x} g(x) \mathbb{P}(X = x)$$

LOTUS

• How do we calculate $\mathbb{E}[X^2]$ since it's nonlinear?

Defintion

The **Law of the Unconscious Statistician**, or LOTUS, states that if g(X) is a function of a discrete random variable, then

$$\mathbb{E}[g(X)] = \sum_{x} g(x) \mathbb{P}(X = x)$$

• Example: $\mathbb{E}[X^2]$ where $X \sim \text{Bin}(n, p)$.

$$\begin{split} \mathbb{E}[X] &= \sum_{k=0}^n k \binom{n}{k} p^k (1-p)^{n-k} \\ \mathbb{E}[X^2] &= \sum_{k=0}^n k^2 \binom{n}{k} p^k (1-p)^{n-k} \end{split}$$

· Use LOTUS to calculate the variance for a discrete r.v.:

$$\mathbb{V}[X] = \sum_{j=1}^{k} (x_j - \mathbb{E}[X])^2 \mathbb{P}(X = x_j)$$

X	
0	1/8
1	3/8
2	3/8
3	1/8 3/8 3/8 1/8

· Use LOTUS to calculate the variance for a discrete r.v.:

$$\mathbb{V}[X] = \sum_{j=1}^{k} (x_j - \mathbb{E}[X])^2 \mathbb{P}(X = x_j)$$

X	$p_X(x)$
0	1/8
1	3/8
2	1/8 3/8 3/8 1/8
3	1/8

• Use LOTUS to calculate the variance for a discrete r.v.:

$$\mathbb{V}[X] = \sum_{j=1}^{k} (x_j - \mathbb{E}[X])^2 \mathbb{P}(X = x_j)$$

$$egin{array}{c|ccccc} x & p_X(x) & x - \mathbb{E}[X] \\ \hline 0 & 1/8 & -1.5 \\ 1 & 3/8 & -0.5 \\ 2 & 3/8 & 0.5 \\ 3 & 1/8 & 1.5 \\ \hline \end{array}$$

$$\mathbb{V}[X] = \sum_{j=1}^{k} (x_j - \mathbb{E}[X])^2 p_X(x_j)$$

• Use LOTUS to calculate the variance for a discrete r.v.:

$$\mathbb{V}[X] = \sum_{j=1}^{k} (x_j - \mathbb{E}[X])^2 \mathbb{P}(X = x_j)$$

x

$$p_X(x)$$
 $x - \mathbb{E}[X]$
 $(x - \mathbb{E}[X])^2$

 0
 1/8
 -1.5
 2.25

 1
 3/8
 -0.5
 0.25

 2
 3/8
 0.5
 0.25

 3
 1/8
 1.5
 2.25

$$V[X] = \sum_{j=1}^{k} (x_j - \mathbb{E}[X])^2 \rho_X(x_j)$$
$$= (-1.5)^2 \times \frac{1}{8} + (-0.5)^2 \times \frac{3}{8} + 0.5^2 \times \frac{3}{8} + 1.5^2 \times \frac{1}{8}$$

• Use LOTUS to calculate the variance for a discrete r.v.:

$$\mathbb{V}[X] = \sum_{i=1}^{K} (x_j - \mathbb{E}[X])^2 \mathbb{P}(X = x_j)$$

X	$p_X(x)$	$x - \mathbb{E}[X]$	$(x - \mathbb{E}[X])^2$
0	1/8	-1.5	2.25
1	3/8	-0.5	0.25
2	3/8	0.5	0.25
3	1/8	1.5	2.25

$$V[X] = \sum_{j=1}^{k} (x_j - \mathbb{E}[X])^2 p_X(x_j)$$

$$= (-1.5)^2 \times \frac{1}{8} + (-0.5)^2 \times \frac{3}{8} + 0.5^2 \times \frac{3}{8} + 1.5^2 \times \frac{1}{8}$$

$$= 2.25 \times \frac{1}{8} + 0.25 \times \frac{3}{8} + 0.25 \times \frac{3}{8} + 2.25 \times \frac{1}{8}$$

• Use LOTUS to calculate the variance for a discrete r.v.:

$$\mathbb{V}[X] = \sum_{i=1}^{K} (x_j - \mathbb{E}[X])^2 \mathbb{P}(X = x_j)$$

X	$p_X(x)$	$x - \mathbb{E}[X]$	$(x - \mathbb{E}[X])^2$
0	1/8	-1.5	2.25
1	3/8	-0.5	0.25
2	3/8	0.5	0.25
3	1/8	1.5	2.25

$$\mathbb{V}[X] = \sum_{j=1}^{k} (x_j - \mathbb{E}[X])^2 p_X(x_j)$$

$$= (-1.5)^2 \times \frac{1}{8} + (-0.5)^2 \times \frac{3}{8} + 0.5^2 \times \frac{3}{8} + 1.5^2 \times \frac{1}{8}$$

$$= 2.25 \times \frac{1}{8} + 0.25 \times \frac{3}{8} + 0.25 \times \frac{3}{8} + 2.25 \times \frac{1}{8} = 0.75$$

1.
$$V[X + c] = V[X]$$
 for any constant c .

- 1. V[X + c] = V[X] for any constant c.
- 2. If a is a constant, $V[aX] = a^2V[X]$.

- 1. V[X + c] = V[X] for any constant c.
- 2. If a is a constant, $V[aX] = a^2V[X]$.
- 3. If *X* and *Y* are **independent**, then $V[X + Y] = \mathbb{V}[X] + \mathbb{V}[Y]$.

- 1. $\mathbb{V}[X+c] = \mathbb{V}[X]$ for any constant c.
- 2. If a is a constant, $V[aX] = a^2V[X]$.
- 3. If *X* and *Y* are **independent**, then V[X + Y] = V[X] + V[Y].
 - But this doesn't hold for dependent r.v.s

- 1. $\mathbb{V}[X+c] = \mathbb{V}[X]$ for any constant c.
- 2. If a is a constant, $V[aX] = a^2V[X]$.
- 3. If X and Y are **independent**, then V[X + Y] = V[X] + V[Y].
 - But this doesn't hold for dependent r.v.s
- 4. $V[X] \ge 0$ with equality holding only if X is a constant, $\mathbb{P}(X = b) = 1$.

• Clunky to use LOTUS to calculate variances. Other ways?

- Clunky to use LOTUS to calculate variances. Other ways?
 - · Use stories and indicator variables!

- · Clunky to use LOTUS to calculate variances. Other ways?
 - · Use stories and indicator variables!
- $X \sim \text{Bin}(n, p)$ is equivalent to $X_1 + \cdots + X_n$ where $X_i \sim \text{Bern}(p)$

- · Clunky to use LOTUS to calculate variances. Other ways?
 - · Use stories and indicator variables!
- $X \sim \text{Bin}(n, p)$ is equivalent to $X_1 + \cdots + X_n$ where $X_i \sim \text{Bern}(p)$
- · Variance of a Bernoulli:

$$\mathbb{V}[X_i] = \mathbb{E}[X_i^2] - (\mathbb{E}[X_i])^2 = p - p^2 = p(1-p)$$

Binomial variance

- · Clunky to use LOTUS to calculate variances. Other ways?
 - · Use stories and indicator variables!
- $X \sim \text{Bin}(n, p)$ is equivalent to $X_1 + \cdots + X_n$ where $X_i \sim \text{Bern}(p)$
- · Variance of a Bernoulli:

$$\mathbb{V}[X_i] = \mathbb{E}[X_i^2] - (\mathbb{E}[X_i])^2 = p - p^2 = p(1-p)$$

• (Used $X_i^2 = X_i$ for indicator variables)

Binomial variance

- · Clunky to use LOTUS to calculate variances. Other ways?
 - · Use stories and indicator variables!
- $X \sim \text{Bin}(n, p)$ is equivalent to $X_1 + \cdots + X_n$ where $X_i \sim \text{Bern}(p)$
- · Variance of a Bernoulli:

$$\mathbb{V}[X_i] = \mathbb{E}[X_i^2] - (\mathbb{E}[X_i])^2 = p - p^2 = p(1-p)$$

- (Used $X_i^2 = X_i$ for indicator variables)
- Binomials are the sum of **independent** Bernoulli r.v.s so:

$$\mathbb{V}[X] = \mathbb{V}[X_1 + \dots + X_n] = \mathbb{V}[X_1] + \dots + \mathbb{V}[X_n] = np(1-p)$$

• Let X_1,\dots,X_n be i.i.d. with $\mathbb{E}[X_i]=\mu$ and $\mathbb{V}[X_i]=\sigma^2$

- Let X_1, \dots, X_n be i.i.d. with $\mathbb{E}[X_i] = \mu$ and $\mathbb{V}[X_i] = \sigma^2$
 - Earlier we saw that $\mathbb{E}[\overline{X}_n] = \mu$, what about $\mathbb{V}[\overline{X}_n]$?

- Let $X_1, ..., X_n$ be i.i.d. with $\mathbb{E}[X_i] = \mu$ and $\mathbb{V}[X_i] = \sigma^2$
 - Earlier we saw that $\mathbb{E}[\overline{X}_n] = \mu$, what about $\mathbb{V}[\overline{X}_n]$?
- We can apply the rules of variances:

$$\mathbb{V}[\overline{X}_n] = \mathbb{V}\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n^2}\sum_{i=1}^n \mathbb{V}[X_i] = \frac{1}{n^2}n\sigma^2 = \frac{\sigma^2}{n}$$

- Let $X_1, ..., X_n$ be i.i.d. with $\mathbb{E}[X_i] = \mu$ and $\mathbb{V}[X_i] = \sigma^2$
 - Earlier we saw that $\mathbb{E}[\overline{X}_n] = \mu$, what about $\mathbb{V}[\overline{X}_n]$?
- We can apply the rules of variances:

$$\mathbb{V}[\overline{X}_n] = \mathbb{V}\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n^2}\sum_{i=1}^n \mathbb{V}[X_i] = \frac{1}{n^2}n\sigma^2 = \frac{\sigma^2}{n}$$

· Note: we needed independence and identically distributed for this.

- Let X_1, \dots, X_n be i.i.d. with $\mathbb{E}[X_i] = \mu$ and $\mathbb{V}[X_i] = \sigma^2$
 - Earlier we saw that $\mathbb{E}[\overline{X}_n] = \mu$, what about $\mathbb{V}[\overline{X}_n]$?
- We can apply the rules of variances:

$$\mathbb{V}[\overline{X}_n] = \mathbb{V}\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n^2}\sum_{i=1}^n \mathbb{V}[X_i] = \frac{1}{n^2}n\sigma^2 = \frac{\sigma^2}{n}$$

- · Note: we needed independence and identically distributed for this.
- $SD(\overline{X}_n) = \sigma/\sqrt{n}$

- Let X_1, \dots, X_n be i.i.d. with $\mathbb{E}[X_i] = \mu$ and $\mathbb{V}[X_i] = \sigma^2$
 - Earlier we saw that $\mathbb{E}[\overline{X}_n] = \mu$, what about $\mathbb{V}[\overline{X}_n]$?
- · We can apply the rules of variances:

$$\mathbb{V}[\overline{X}_n] = \mathbb{V}\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n^2}\sum_{i=1}^n \mathbb{V}[X_i] = \frac{1}{n^2}n\sigma^2 = \frac{\sigma^2}{n}$$

- · Note: we needed independence and identically distributed for this.
- $SD(\overline{X}_n) = \sigma/\sqrt{n}$
- Under i.i.d. sampling we know the expectation and variance of \overline{X}_n without any other assumptions about the distribution of the X_i !

- Let X_1, \dots, X_n be i.i.d. with $\mathbb{E}[X_i] = \mu$ and $\mathbb{V}[X_i] = \sigma^2$
 - Earlier we saw that $\mathbb{E}[\overline{X}_n] = \mu$, what about $\mathbb{V}[\overline{X}_n]$?
- We can apply the rules of variances:

$$\mathbb{V}[\overline{X}_n] = \mathbb{V}\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n^2}\sum_{i=1}^n \mathbb{V}[X_i] = \frac{1}{n^2}n\sigma^2 = \frac{\sigma^2}{n}$$

- · Note: we needed independence and identically distributed for this.
- $SD(\overline{X}_n) = \sigma/\sqrt{n}$
- Under i.i.d. sampling we know the expectation and variance of X
 without any other assumptions about the distribution of the X
 i!
 - We don't know what distribution it takes though!

• Bounds are very important establishing unknown probabilities.

- Bounds are very important establishing unknown probabilities.
 - Also very helpful in establishing limit results later on.

- Bounds are very important establishing unknown probabilities.
 - · Also very helpful in establishing limit results later on.
- Remember that $\mathbb{E}[a+bX]=a+b\mathbb{E}[X]$ is linear, but $\mathbb{E}[g(X)]\neq g(\mathbb{E}[X])$ for nonlinear functions.

- · Bounds are very important establishing unknown probabilities.
 - · Also very helpful in establishing limit results later on.
- Remember that $\mathbb{E}[a+bX]=a+b\mathbb{E}[X]$ is linear, but $\mathbb{E}[g(X)]\neq g(\mathbb{E}[X])$ for nonlinear functions.
- Can we relate those? Yes for **convex** and **concave** functions.

Concave and convex

Jensen's inequality

Let X be a r.v. Then, we have

$$\mathbb{E}[g(X)] \ge g(\mathbb{E}[X])$$
 if g is convex $\mathbb{E}[g(X)] \le g(\mathbb{E}[X])$ if g is concave

with equality only holding if g is linear.

· Makes proving variance positive simple.

Jensen's inequality

Let X be a r.v. Then, we have

$$\mathbb{E}[g(X)] \ge g(\mathbb{E}[X])$$
 if g is convex $\mathbb{E}[g(X)] \le g(\mathbb{E}[X])$ if g is concave

- · Makes proving variance positive simple.
 - $g(x) = x^2$ is convex, so $\mathbb{E}[X^2] \ge (\mathbb{E}[X])^2$.

Jensen's inequality

Let X be a r.v. Then, we have

$$\mathbb{E}[g(X)] \ge g(\mathbb{E}[X])$$
 if g is convex $\mathbb{E}[g(X)] \le g(\mathbb{E}[X])$ if g is concave

- · Makes proving variance positive simple.
 - $g(x) = x^2$ is convex, so $\mathbb{E}[X^2] \ge (\mathbb{E}[X])^2$.
- Allows us to easily reason about complicated functions:

Jensen's inequality

Let X be a r.v. Then, we have

$$\mathbb{E}[g(X)] \ge g(\mathbb{E}[X])$$
 if g is convex $\mathbb{E}[g(X)] \le g(\mathbb{E}[X])$ if g is concave

- · Makes proving variance positive simple.
 - $g(x) = x^2$ is convex, so $\mathbb{E}[X^2] \ge (\mathbb{E}[X])^2$.
- Allows us to easily reason about complicated functions:
 - $\mathbb{E}[|X|] \ge |\mathbb{E}[X]|$

Jensen's inequality

Let X be a r.v. Then, we have

$$\mathbb{E}[g(X)] \ge g(\mathbb{E}[X])$$
 if g is convex $\mathbb{E}[g(X)] \le g(\mathbb{E}[X])$ if g is concave

- · Makes proving variance positive simple.
 - $g(x) = x^2$ is convex, so $\mathbb{E}[X^2] \ge (\mathbb{E}[X])^2$.
- Allows us to easily reason about complicated functions:
 - $\mathbb{E}[|X|] \ge |\mathbb{E}[X]|$
 - $\mathbb{E}[1/X] \geq 1/\mathbb{E}[X]$

Jensen's inequality

Let X be a r.v. Then, we have

$$\mathbb{E}[g(X)] \ge g(\mathbb{E}[X])$$
 if g is convex $\mathbb{E}[g(X)] \le g(\mathbb{E}[X])$ if g is concave

- · Makes proving variance positive simple.
 - $g(x) = x^2$ is convex, so $\mathbb{E}[X^2] \ge (\mathbb{E}[X])^2$.
- Allows us to easily reason about complicated functions:
 - $\mathbb{E}[|X|] \ge |\mathbb{E}[X]|$
 - $\mathbb{E}[1/X] \geq 1/\mathbb{E}[X]$
 - $\mathbb{E}[\log(X)] \leq \log(\mathbb{E}[X])$

6/ Poisson Distribution

Poisson

Definition

An r.v. X has the **Poisson distribution** with parameter $\lambda > 0$, written $X \sim \text{Pois}(\lambda)$ if the p.m.f. of X is:

$$\mathbb{P}(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}, \qquad k = 0, 1, 2, ...$$

• One more discrete distribution is very popular, especially for counts.

Poisson

Definition

An r.v. X has the **Poisson distribution** with parameter $\lambda > 0$, written $X \sim \text{Pois}(\lambda)$ if the p.m.f. of X is:

$$\mathbb{P}(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}, \qquad k = 0, 1, 2, ...$$

- One more discrete distribution is very popular, especially for counts.
 - Number of contributions a candidate for office receives in a day.

Poisson

Definition

An r.v. X has the **Poisson distribution** with parameter $\lambda > 0$, written $X \sim \text{Pois}(\lambda)$ if the p.m.f. of X is:

$$\mathbb{P}(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}, \qquad k = 0, 1, 2, ...$$

- One more discrete distribution is very popular, especially for counts.
 - · Number of contributions a candidate for office receives in a day.
- Key calculus fact that makes this a valid p.m.f.: $\sum_{k=0}^{\infty} \lambda^k/k! = \mathrm{e}^{\lambda}$.

Poisson properties

• A Poisson r.v. $X \sim \text{Pois}(\lambda)$ has an unusual property:

$$\mathbb{E}[X] = \mathbb{V}[X] = \lambda$$

Poisson properties

• A Poisson r.v. $X \sim Pois(\lambda)$ has an unusual property:

$$\mathbb{E}[X] = \mathbb{V}[X] = \lambda$$

• The sum of independent Poisson r.v.s is Poisson:

$$X \sim \operatorname{Pois}(\lambda_1) \quad Y \sim \operatorname{Pois}(\lambda_2) \quad \Longrightarrow \quad X + Y \sim \operatorname{Pois}(\lambda_1 + \lambda_2)$$

Poisson properties

• A Poisson r.v. $X \sim Pois(\lambda)$ has an unusual property:

$$\mathbb{E}[X] = \mathbb{V}[X] = \lambda$$

• The sum of independent Poisson r.v.s is Poisson:

$$\textit{X} \sim \mathsf{Pois}(\lambda_1) \quad \textit{Y} \sim \mathsf{Pois}(\lambda_2) \quad \implies \quad \textit{X} + \textit{Y} \sim \mathsf{Pois}(\lambda_1 + \lambda_2)$$

• If $X \sim Bin(n, p)$ with n large and p small, then X is approx Pois(np).