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Where are we? Where are we going?

• We’ve defined random variables and their distributions.

• Distributions give full information about the probabilities of an r.v.

• Today: begin to summarize distributions with a few numbers.
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Motivation: causal effects

• Consider a hypothetical intervention such as “door-to-door get out the
vote.”

• We’ll define two potential outcomes:

• 𝘠𝘪 (𝟣): whether person 𝘪 would vote (1) or not (0) if they received
canvassing.

• 𝘠𝘪 (𝟢): whether person 𝘪 would vote (1) or not (0) if they didn’t receive the
canvassing.

• The individual causal effect of canvassing then is

𝜏𝘪 = 𝘠𝘪 (𝟣) − 𝘠𝘪 (𝟢)

• We can think of 𝘠𝘪 (𝟣) and 𝘠𝘪 (𝟢) as rvs and so 𝜏𝘪 is a rv as well.

• How should we summarize the distribution of causal effects?
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1/ Definition of
Expectation



How can we summarize distributions?
• Probability distributions describe the uncertainty about r.v.s.

• Can we summarize probability distributions?

• Question: What is the difference between these two p.m.f.s? How might
we summarize this difference?
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Goals for summarizing

1. Central tendency: where the center of the distribution is.

• We’ll focus on the mean/expectation.

2. Spread: how spread out the distribution is around the center.

• We’ll focus on the variance/standard deviation.

• These are population parameters so we don’t get to observe them.

• We won’t get to observe them…
• but we’ll use our sample to learn about them
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Two ways to calculate averages

• Calculate the average of: {𝟣, 𝟣, 𝟣, 𝟥, 𝟦, 𝟦, 𝟧, 𝟧}

𝟣 + 𝟣 + 𝟣 + 𝟥 + 𝟦 + 𝟦 + 𝟧 + 𝟧
𝟪 = 𝟥

• Alternative way to calculate average based on frequency weights:

𝟣 × 𝟥
𝟪 + 𝟥 × 𝟣

𝟪 + 𝟦 × 𝟤
𝟪 + 𝟧 × 𝟤

𝟪 = 𝟥

• Each value times how often that value occurs in the data.
• We’ll use this intuition to create an average/mean for r.v.s.
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Expectation
Definition
The expected value (or expectation or mean) of a discrete r.v. 𝘟 with
possible values, 𝘹𝟣, 𝘹𝟤, … is

𝔼[𝘟] =
∞

∑
𝘫=𝟣

𝘹𝘫ℙ(𝘟 = 𝘹𝘫)

• Weighted average of the values of the r.v. weighted by the probability of
each value occurring.

• 𝘌[𝘟] is a constant!

• Example: 𝘟 ∼ Bern(𝘱), then 𝔼[𝘟] = 𝟣𝘱 + 𝟢(𝟣 − 𝘱) = 𝘱.

• If 𝘟 and 𝘠 have the same distribution, then 𝔼[𝘟] = 𝔼[𝘠 ].

• Converse isn’t true!

7 / 28



Expectation
Definition
The expected value (or expectation or mean) of a discrete r.v. 𝘟 with
possible values, 𝘹𝟣, 𝘹𝟤, … is

𝔼[𝘟] =
∞

∑
𝘫=𝟣

𝘹𝘫ℙ(𝘟 = 𝘹𝘫)

• Weighted average of the values of the r.v. weighted by the probability of
each value occurring.

• 𝘌[𝘟] is a constant!

• Example: 𝘟 ∼ Bern(𝘱), then 𝔼[𝘟] =

𝟣𝘱 + 𝟢(𝟣 − 𝘱) = 𝘱.

• If 𝘟 and 𝘠 have the same distribution, then 𝔼[𝘟] = 𝔼[𝘠 ].

• Converse isn’t true!

7 / 28



Expectation
Definition
The expected value (or expectation or mean) of a discrete r.v. 𝘟 with
possible values, 𝘹𝟣, 𝘹𝟤, … is

𝔼[𝘟] =
∞

∑
𝘫=𝟣

𝘹𝘫ℙ(𝘟 = 𝘹𝘫)

• Weighted average of the values of the r.v. weighted by the probability of
each value occurring.

• 𝘌[𝘟] is a constant!

• Example: 𝘟 ∼ Bern(𝘱), then 𝔼[𝘟] =

𝟣𝘱 + 𝟢(𝟣 − 𝘱) = 𝘱.

• If 𝘟 and 𝘠 have the same distribution, then 𝔼[𝘟] = 𝔼[𝘠 ].

• Converse isn’t true!

7 / 28



Expectation
Definition
The expected value (or expectation or mean) of a discrete r.v. 𝘟 with
possible values, 𝘹𝟣, 𝘹𝟤, … is

𝔼[𝘟] =
∞

∑
𝘫=𝟣

𝘹𝘫ℙ(𝘟 = 𝘹𝘫)

• Weighted average of the values of the r.v. weighted by the probability of
each value occurring.

• 𝘌[𝘟] is a constant!

• Example: 𝘟 ∼ Bern(𝘱), then 𝔼[𝘟] =

𝟣𝘱 + 𝟢(𝟣 − 𝘱) = 𝘱.

• If 𝘟 and 𝘠 have the same distribution, then 𝔼[𝘟] = 𝔼[𝘠 ].

• Converse isn’t true!

7 / 28



Expectation
Definition
The expected value (or expectation or mean) of a discrete r.v. 𝘟 with
possible values, 𝘹𝟣, 𝘹𝟤, … is

𝔼[𝘟] =
∞

∑
𝘫=𝟣

𝘹𝘫ℙ(𝘟 = 𝘹𝘫)

• Weighted average of the values of the r.v. weighted by the probability of
each value occurring.

• 𝘌[𝘟] is a constant!

• Example: 𝘟 ∼ Bern(𝘱), then 𝔼[𝘟] = 𝟣𝘱 + 𝟢(𝟣 − 𝘱) = 𝘱.

• If 𝘟 and 𝘠 have the same distribution, then 𝔼[𝘟] = 𝔼[𝘠 ].

• Converse isn’t true!

7 / 28



Expectation
Definition
The expected value (or expectation or mean) of a discrete r.v. 𝘟 with
possible values, 𝘹𝟣, 𝘹𝟤, … is

𝔼[𝘟] =
∞

∑
𝘫=𝟣

𝘹𝘫ℙ(𝘟 = 𝘹𝘫)

• Weighted average of the values of the r.v. weighted by the probability of
each value occurring.

• 𝘌[𝘟] is a constant!

• Example: 𝘟 ∼ Bern(𝘱), then 𝔼[𝘟] = 𝟣𝘱 + 𝟢(𝟣 − 𝘱) = 𝘱.

• If 𝘟 and 𝘠 have the same distribution, then 𝔼[𝘟] = 𝔼[𝘠 ].

• Converse isn’t true!

7 / 28



Expectation
Definition
The expected value (or expectation or mean) of a discrete r.v. 𝘟 with
possible values, 𝘹𝟣, 𝘹𝟤, … is

𝔼[𝘟] =
∞

∑
𝘫=𝟣

𝘹𝘫ℙ(𝘟 = 𝘹𝘫)

• Weighted average of the values of the r.v. weighted by the probability of
each value occurring.

• 𝘌[𝘟] is a constant!

• Example: 𝘟 ∼ Bern(𝘱), then 𝔼[𝘟] = 𝟣𝘱 + 𝟢(𝟣 − 𝘱) = 𝘱.

• If 𝘟 and 𝘠 have the same distribution, then 𝔼[𝘟] = 𝔼[𝘠 ].

• Converse isn’t true!

7 / 28



Example - number of treated units

• Randomized experiment with 3 units. 𝘟 is number of treated units.

𝘹 𝘱𝘟 (𝘹)

𝘹𝘱𝘟 (𝘹)

0 1/8

0

1 3/8

3/8

2 3/8

6/8

3 1/8

3/8

• Calculate the expectation of 𝘟 :

𝔼[𝘟] =
𝘬

∑
𝘫=𝟣

𝘹𝘫ℙ(𝘟 = 𝘹𝘫)

= 𝟢 ⋅ ℙ(𝘟 = 𝟢) + 𝟣 ⋅ ℙ(𝘟 = 𝟣) + 𝟤 ⋅ ℙ(𝘟 = 𝟤) + 𝟥 ⋅ ℙ(𝘟 = 𝟥)

= 𝟢 ⋅ 𝟣
𝟪 + 𝟣 ⋅ 𝟥

𝟪 + 𝟤 ⋅ 𝟥
𝟪 + 𝟥 ⋅ 𝟣

𝟪 = 𝟣𝟤
𝟪 = 𝟣.𝟧
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Expectation as balancing point
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2/ Linearity of
Expectations



Properties of the expected value

• Often want to derive expectation of transformations of other r.v.s

• Possible for linear functions because expectation is linear:

𝔼[𝘟 + 𝘠 ] = 𝔼[𝘟] + 𝔼[𝘠 ]
𝔼[𝘢𝘟] = 𝘢𝔼[𝘟] if 𝘢 is a constant

• True even if 𝘟 and 𝘠 are dependent!

• But this isn’t always true for nonlinear functions:

• 𝔼[𝘨(𝘟)] ≠ 𝘨(𝔼[𝘟]) unless 𝘨(⋅) is a linear function.
• 𝔼[𝘟𝘠 ] ≠ 𝔼[𝘟]𝔼[𝘠 ] unless 𝘟 and 𝘠 are independent.
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Expectation of a binomial

• Let 𝘟 ∼ Bin(𝘯, 𝘱), what’s 𝔼[𝘟]? Could just plug in formula:

𝔼[𝘟] =
𝘯

∑
𝘬=𝟢

𝘬(𝘯
𝘬)𝘱𝘬(𝟣 − 𝘱)𝘯−𝘬 = ??

• Use the story of the binomial as a sum of 𝘯 Bernoulli 𝘟𝘪 ∼ Bern(𝘱)

𝘟 = 𝘟𝟣 + ⋯ + 𝘟𝘯

• Use linearity:

𝔼[𝘟] = 𝔼[𝘟𝟣 + ⋯ + 𝘟𝘯] = 𝔼[𝘟𝟣] + ⋯ + 𝔼[𝘟𝘯] = 𝘯𝘱
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Expectation of the sample mean

• Let 𝘟𝟣, … , 𝘟𝘯 be identically distributed with 𝔼[𝘟𝘪 ] = 𝜇.

• Define the sample mean to be 𝘟 𝘯 = 𝘯−𝟣 ∑𝘯
𝘪=𝟣 𝘟𝘪 .

• 𝘟 is a r.v.!

• We can find the expectation of the sample mean using linearity:

𝔼[𝘟 𝘯] = 𝔼 [ 𝟣
𝘯

𝘯
∑
𝘪=𝟣

𝘟𝘪] = 𝟣
𝘯

𝘯
∑
𝘪=𝟣

𝔼[𝘟𝘪 ] = 𝟣
𝘯 𝘯𝜇 = 𝜇

• Intuition: on average, the sample mean is equal to the population
mean.
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Monotonicity of expectations

• Expectations don’t have to be in the support of the data.

• 𝘟 ∼ Bern(𝘱) has 𝘌[𝘟] = 𝘱 which isn’t 0 or 1.

• But it must be between the highest and lowest possible value of an r.v.

• If ℙ(𝘟 ≥ 𝘤) = 𝟣, then 𝔼[𝘟] ≥ 𝘤 .
• If ℙ(𝘟 ≤ 𝘤) = 𝟣, then 𝔼[𝘟] ≤ 𝘤 .

• Useful application of linearity: expectation is monotone.

• If 𝘟 ≥ 𝘠 with probability 1, then 𝔼(𝘟) ≥ 𝔼(𝘠 ).
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St. Petersburg Paradox
• Game of chance: stranger pays you $𝟤𝘟 where 𝘟 is the number of flips
with a fair coin until the first heads.

• Probability of reaching 𝘟 = 𝘬 is:

ℙ(𝘟 = 𝘬) = ℙ(𝘛𝟣 ∩𝘛𝟤 ∩⋯∩𝘛𝘬−𝟣 ∩𝘏𝘬) = ℙ(𝘛𝟣)ℙ(𝘛𝟤) ⋯ ℙ(𝘛𝘬−𝟣)ℙ(𝘏𝘬) = 𝟣
𝟤𝘬

• How much would you be willing to pay to play the game?

• Let payout be 𝘠 = 𝟤𝘟 , we want 𝔼[𝘠 ]:

𝔼[𝘠 ] =
∞

∑
𝘬=𝟣

𝟤𝘬 𝟣
𝟤𝘬 =

∞
∑
𝘬=𝟣

𝟣 = ∞

• Two ways to resolve the “paradox”:

• No infinite money: max payout of 𝟤𝟦𝟢 (around a trillion)⇝ 𝔼[𝘠 ] = 𝟦𝟣
• Risk avoidance/concave utility 𝘜 = 𝘠 𝟣/𝟤⇝ 𝔼[𝘜(𝘠 )] ≈ 𝟤.𝟦𝟣
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∑
𝘬=𝟣

𝟤𝘬 𝟣
𝟤𝘬 =

∞
∑
𝘬=𝟣

𝟣 = ∞

• Two ways to resolve the “paradox”:

• No infinite money: max payout of 𝟤𝟦𝟢 (around a trillion)⇝ 𝔼[𝘠 ] = 𝟦𝟣
• Risk avoidance/concave utility 𝘜 = 𝘠 𝟣/𝟤⇝ 𝔼[𝘜(𝘠 )] ≈ 𝟤.𝟦𝟣
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Undefined expectations*

• We saw 𝔼[𝘟] can be infinite, but it can also be undefined.

• Example: 𝘟 takes 𝟤𝘬 and −𝟤𝘬 each with prob 𝟤−𝘬−𝟣.

𝔼[𝘟] =
∞

∑
𝘬=𝟣

𝟤𝘬𝟤−𝘬−𝟣 −
∞

∑
𝘬=𝟣

𝟤𝘬𝟤−𝘬−𝟣 =
∞

∑
𝘬=𝟣

𝟣
𝟤 −

∞
∑
𝘬=𝟣

𝟣
𝟤 = ∞ − ∞

• Often, both of these are assumed away by assuming 𝔼[|𝘟 |] < ∞ which
implies 𝔼[𝘟] exists and is finite.
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3/ Indicator Variables



Indicator variables/fundamental bridge

• The probability of an event is equal to the expectation of its indicator:

ℙ(𝘈) = 𝔼[𝕀(𝘈)]

• Fundamental bridge between probability and expectation

• Makes it easy to prove probability results like Bonferroni’s inequality

ℙ(𝘈𝟣 ∪ ⋯ ∪ 𝘈𝘯) ≤ ℙ(𝘈𝟣) + ⋯ + ℙ(𝘈𝘯)

• Use the fact that 𝕀(𝘈𝟣 ∪ ⋯ ∪ 𝘈𝘯) ≤ 𝕀(𝘈𝟣) + ⋯ + 𝕀(𝘈𝘯) and then take
expectations.
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Using indicators to find expectations

• Suppose we are assigning 𝘯 units to 𝘬 treatments and all possibilities
equally likely. What is the expected number of treatment conditions
without any units?

• Use indicators! 𝘐𝘫 = 𝟣 if 𝘫th condition is empty. So 𝘐𝟣 + ⋯ + 𝘐𝘬 is the
number of empty conditions.

𝔼[𝘐𝘫 ] = ℙ(cond 𝘫 empty)
= ℙ({unit 1 not in cond 𝘫} ∩ ⋯ ∩ {unit 𝘯 not in cond 𝘫})
= ℙ({unit 1 not in cond 𝘫}) ⋯ ℙ({unit 𝘯 not in cond 𝘫})

= (𝟣 − 𝟣
𝘬 )

𝘯

• Thus, we have 𝔼 [∑𝘫 𝘐𝘫] = 𝘬(𝟣 − 𝟣/𝘬)𝘯.
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4/ Variance



Variance
• The variance measures the spread of the distribution:

𝕍[𝘟] = 𝔼[(𝘟 − 𝔼[𝘟])𝟤]

• Could also use 𝔼[|𝘟 − 𝔼[𝘟]|] but more clunky as a function.

• Weighted average of the squared distances from the mean.

• Larger deviations (+ or −)⇝ higher variance

• The standard deviation is the (positive) square root of the variance:

𝘚𝘋(𝘟) = √𝕍[𝘟]

• Useful equivalent representation of the variance:

𝕍[𝘟] = 𝔼[𝘟 𝟤] − (𝔼[𝘟])𝟤
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LOTUS
• How do we calculate 𝔼[𝘟 𝟤] since it’s nonlinear?

Defintion
The Law of the Unconscious Statistician, or LOTUS, states that if 𝘨(𝘟) is a
function of a discrete random variable, then

𝔼[𝘨(𝘟)] = ∑
𝘹

𝘨(𝘹)ℙ(𝘟 = 𝘹)

• Example: 𝔼[𝘟 𝟤] where 𝘟 ∼ Bin(𝘯, 𝘱).

𝔼[𝘟] =
𝘯

∑
𝘬=𝟢

𝘬(𝘯
𝘬)𝘱𝘬(𝟣 − 𝘱)𝘯−𝘬

𝔼[𝘟 𝟤] =
𝘯

∑
𝘬=𝟢

𝘬𝟤(𝘯
𝘬)𝘱𝘬(𝟣 − 𝘱)𝘯−𝘬
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Example - number of treated units
• Use LOTUS to calculate the variance for a discrete r.v.:

𝕍[𝘟] =
𝘬

∑
𝘫=𝟣

(𝘹𝘫 − 𝔼[𝘟])𝟤ℙ(𝘟 = 𝘹𝘫)

𝘹 𝘱𝘟 (𝘹)

𝘹 − 𝔼[𝘟] (𝘹 − 𝔼[𝘟])𝟤

0 1/8

-1.5 2.25

1 3/8

-0.5 0.25

2 3/8

0.5 0.25

3 1/8

1.5 2.25
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Properties of variances

1. 𝕍[𝘟 + 𝘤] = 𝕍[𝘟] for any constant 𝘤 .

2. If 𝘢 is a constant, 𝕍[𝘢𝘟] = 𝘢𝟤𝕍[𝘟].

3. If 𝘟 and 𝘠 are independent, then 𝘝 [𝘟 + 𝘠 ] = 𝕍[𝘟] + 𝕍[𝘠 ].

• But this doesn’t hold for dependent r.v.s

4. 𝕍[𝘟] ≥ 𝟢 with equality holding only if 𝘟 is a constant, ℙ(𝘟 = 𝘣) = 𝟣.
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Binomial variance

• Clunky to use LOTUS to calculate variances. Other ways?

• Use stories and indicator variables!

• 𝘟 ∼ Bin(𝘯, 𝘱) is equivalent to 𝘟𝟣 + ⋯ + 𝘟𝘯 where 𝘟𝘪 ∼ Bern(𝘱)

• Variance of a Bernoulli:

𝕍[𝘟𝘪 ] = 𝔼[𝘟 𝟤
𝘪 ] − (𝔼[𝘟𝘪 ])𝟤 = 𝘱 − 𝘱𝟤 = 𝘱(𝟣 − 𝘱)

• (Used 𝘟 𝟤
𝘪 = 𝘟𝘪 for indicator variables)

• Binomials are the sum of independent Bernoulli r.v.s so:

𝕍[𝘟] = 𝕍[𝘟𝟣 + ⋯ + 𝘟𝘯] = 𝕍[𝘟𝟣] + ⋯ + 𝕍[𝘟𝘯] = 𝘯𝘱(𝟣 − 𝘱)
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Variance of the sample mean

• Let 𝘟𝟣, … , 𝘟𝘯 be i.i.d. with 𝔼[𝘟𝘪 ] = 𝜇 and 𝕍[𝘟𝘪 ] = 𝜎 𝟤

• Earlier we saw that 𝔼[𝘟 𝘯] = 𝜇, what about 𝕍[𝘟 𝘯]?

• We can apply the rules of variances:

𝕍[𝘟 𝘯] = 𝕍 [ 𝟣
𝘯

𝘯
∑
𝘪=𝟣

𝘟𝘪] = 𝟣
𝘯𝟤

𝘯
∑
𝘪=𝟣

𝕍[𝘟𝘪 ] = 𝟣
𝘯𝟤 𝘯𝜎 𝟤 = 𝜎 𝟤

𝘯

• Note: we needed independence and identically distributed for this.
• 𝘚𝘋(𝘟 𝘯) = 𝜎/√𝘯

• Under i.i.d. sampling we know the expectation and variance of 𝘟 𝘯
without any other assumptions about the distribution of the 𝘟𝘪 !

• We don’t know what distribution it takes though!
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• We can apply the rules of variances:

𝕍[𝘟 𝘯] = 𝕍 [ 𝟣
𝘯

𝘯
∑
𝘪=𝟣

𝘟𝘪] = 𝟣
𝘯𝟤

𝘯
∑
𝘪=𝟣

𝕍[𝘟𝘪 ] = 𝟣
𝘯𝟤 𝘯𝜎 𝟤 = 𝜎 𝟤

𝘯

• Note: we needed independence and identically distributed for this.

• 𝘚𝘋(𝘟 𝘯) = 𝜎/√𝘯

• Under i.i.d. sampling we know the expectation and variance of 𝘟 𝘯
without any other assumptions about the distribution of the 𝘟𝘪 !

• We don’t know what distribution it takes though!
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5/ Inequalities



Inequalities

• Bounds are very important establishing unknown probabilities.

• Also very helpful in establishing limit results later on.

• Remember that 𝔼[𝘢 + 𝘣𝘟] = 𝘢 + 𝘣𝔼[𝘟] is linear, but 𝔼[𝘨(𝘟)] ≠ 𝘨(𝔼[𝘟])
for nonlinear functions.

• Can we relate those? Yes for convex and concave functions.
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Jensen’s inequality
Jensen’s inequality

Let 𝘟 be a r.v. Then, we have

𝔼[𝘨(𝘟)] ≥ 𝘨(𝔼[𝘟]) if 𝘨 is convex
𝔼[𝘨(𝘟)] ≤ 𝘨(𝔼[𝘟]) if 𝘨 is concave

with equality only holding if 𝘨 is linear.

• Makes proving variance positive simple.

• 𝘨(𝘹) = 𝘹𝟤 is convex, so 𝔼[𝘟 𝟤] ≥ (𝔼[𝘟])𝟤.

• Allows us to easily reason about complicated functions:

• 𝔼[|𝘟 |] ≥ |𝔼[𝘟]|
• 𝔼[𝟣/𝘟] ≥ 𝟣/𝔼[𝘟]
• 𝔼[log(𝘟)] ≤ log(𝔼[𝘟])
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6/ Poisson Distribution



Poisson

Definition
An r.v. 𝘟 has the Poisson distribution with parameter 𝜆 > 𝟢, written
𝘟 ∼ Pois(𝜆) if the p.m.f. of 𝘟 is:

ℙ(𝘟 = 𝘬) = 𝘦−𝜆𝜆𝘬

𝘬! , 𝘬 = 𝟢, 𝟣, 𝟤, …

• One more discrete distribution is very popular, especially for counts.

• Number of contributions a candidate for office receives in a day.

• Key calculus fact that makes this a valid p.m.f.: ∑∞
𝘬=𝟢 𝜆𝘬/𝘬! = 𝘦𝜆.
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Poisson properties

• A Poisson r.v. 𝘟 ∼ Pois(𝜆) has an unusual property:

𝔼[𝘟] = 𝕍[𝘟] = 𝜆

• The sum of independent Poisson r.v.s is Poisson:

𝘟 ∼ Pois(𝜆𝟣) 𝘠 ∼ Pois(𝜆𝟤) ⟹ 𝘟 + 𝘠 ∼ Pois(𝜆𝟣 + 𝜆𝟤)

• If 𝘟 ∼ Bin(𝘯, 𝘱) with 𝘯 large and 𝘱 small, then 𝘟 is approx Pois(𝘯𝘱).
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