3: Random Variables

Fall 2023

Matthew Blackwell
Gov 2002 (Harvard)

Where are we? Where are we going?

- Up to now: probability of abstract events, but data is numeric!
- Connection between probability and data: random variables.
- Long-term goal: inferring the data generating process of this variable.
- What is the true Biden approval rate in the US?
- Today: given a probability distribution, what data is likely?
- If we knew the true Biden approval, what samples are likely?

1. Random variables
2. Famous distributions
3. Cumulative distribution functions
4. Functions of random variables
5. Independent random variables

1/ Random variables

What are random variables?

Definition

A random variable (r.v.) is a function that maps from the sample space of an experiment to the real line or $X: \Omega \rightarrow \mathbb{R}$.

- Numeric representation of uncertain events \rightsquigarrow we can use math!
- The r.v. is X and the numerical value for some outcome ω is $X(\omega)$.
- Randomness comes from the randomness of the experiment.

Example: sampling senators

- For any experiment, there can be many random variables.
- Randomly sample 2 senators $\rightsquigarrow 4$ outcomes: $\Omega=\{D D, R D, D R, R R\}$.
- $X=$ number of Democrats in the two draws.
- $X(D D)=2, X(R D)=X(D R)=1, X(R R)=0$
- Another r.v. $Y=$ number of Republicans in the two draws, $Y=2-X$
- $Z=1$ if draw is two Democrats ($D D$), 0 otherwise.
- Usually abstract away from the underlying sample space fairly quickly.

Types of r.v.s

- Two main types of r.v.s: discrete and continuous. Focus on discrete now.

Definition

A r.v. X is discrete the values it takes with positive probability is finite ($X \in\left\{x_{1}, \ldots, x_{k}\right\}$) or countably infinite $\left(X \in\left\{x_{1}, x_{2}, \ldots\right\}\right)$.

- The support of X is the values x such that $\mathbb{P}(X=x)>0$.

The random in random variable

- How are r.v.s random?
- Uncertainty over $\Omega \rightsquigarrow$ uncertainty over value of X.
- We'll use probability to formalize this uncertainty.
- The distribution of a r.v. describes its behavior in terms of probability.
- Specifies probabilities of all possible events of the r.v.
- $X=$ number of times a randomly chosen citizen contributed to a campaign in 2020.
- What's the $\mathbb{P}(X>5)$? $\mathbb{P}(X=0)$?
- Often there are many ways to express a distribution.

Inducing probabilities

- Let X be the number of heads in two coin flips.

ω	$\mathbb{P}(\{\omega\})$	$X(\omega)$
TT	$1 / 4$	0
HT	$1 / 4$	1
TH	$1 / 4$	1
HH	$1 / 4$	2

x	$\mathbb{P}(X=x)$
0	$1 / 4$
1	$1 / 2$
2	$1 / 4$

Expressing a distribution

- Probability mass function (p.m.f.): $p_{X}(x)=\mathbb{P}(X=x)$
- Careful: $\mathbb{P}(X=x)$ makes sense $\mathrm{b} / \mathrm{c}\{X=x\}$ is an event.
- $\mathbb{P}(X)$ doesn't make any sense since X is just a mapping.
- Some properties of valid p.m.f. of a discrete r.v. X with support x_{1}, x_{2}, \ldots :
- Nonnegative: $p_{X}(x)>0$ if $x \in x_{1}, x_{2}, \ldots$ and $p_{X}(x)=0$ otherwise.
- Sums to 1: $\sum_{j=1}^{\infty} p_{X}\left(x_{j}\right)=1$.
- Probability of a set of values $S \subset\left\{x_{1}, x_{2}, \ldots\right\}$:

$$
\mathbb{P}(X \in S)=\sum_{x \in S} p_{X}(x)
$$

Example - random assignment to treatment

- You want to run a randomized control trial on 3 people.
- Use the following procedure:
- Flip independent fair coins for each unit
- Heads assigned to Control (C), tails to Treatment (T)
- Let X be the number of treated units:

$$
X= \begin{cases}0 & \text { if }(C, C, C) \\ 1 & \text { if }(T, C, C) \text { or }(C, T, C) \text { or }(C, C, T) \\ 2 & \text { if }(T, T, C) \text { or }(C, T, T) \text { or }(T, C, T) \\ 3 & \text { if }(T, T, T)\end{cases}
$$

- Use independence and fair coins:

$$
\mathbb{P}(C, T, C)=\mathbb{P}(C) \mathbb{P}(T) \mathbb{P}(C)=\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{8}
$$

Calculating the p.m.f.

$$
\begin{aligned}
& p_{X}(0)=\mathbb{P}(X=0)=\mathbb{P}(C, C, C)=\frac{1}{8} \\
& p_{X}(1)=\mathbb{P}(X=1)=\mathbb{P}(T, C, C)+\mathbb{P}(C, T, C)+\mathbb{P}(C, C, T)=\frac{3}{8} \\
& p_{X}(2)=\mathbb{P}(X=2)=\mathbb{P}(T, T, C)+\mathbb{P}(C, T, T)+\mathbb{P}(T, C, T)=\frac{3}{8} \\
& p_{X}(3)=\mathbb{P}(X=3)=\mathbb{P}(T, T, T)=\frac{1}{8}
\end{aligned}
$$

-What's $\mathbb{P}(X=4)$? 0 !

Plotting the p.m.f.

- We could plot this p.m.f. using R:

- Question: Does this seem like a good way to assign treatment? What is one major problem with it?

2| Famous distributions

Bernoulli distribution

Definition

An r.v. X has a Bernoulli distribution with parameter p if $\mathbb{P}(X=1)=p$ and $P(X=0)=1-p$ and this is written as $X \sim \operatorname{Bern}(p)$.

- Story: indicator of success in some trial with either success or failure.
- Actually a family of distributions indexed by p.
- Any event A has an associated Bernoulli r.v.: indicator variable:

$$
\mathbb{D}(A) \sim \operatorname{Bern}(p) \text { with } p=\mathbb{P}(A)
$$

Binomial distribution

Definition

Let X be the number of successes in n independent Bernoulli trials all with success probability p. Then X follows the binomial distribution with parameters n and p, which is written $X \sim \operatorname{Bin}(n, p)$.

- Definition is based on a story: helps pattern match to our data.
- Also helps draw immediate connections:
- $\operatorname{Bin}(1, p) \sim \operatorname{Bern}(p)$.
- If $X \sim \operatorname{Bin}(n, p)$, then $n-X \sim \operatorname{Bin}(n, 1-p)$.

Binomial p.m.f.

Binomial p.m.f.

If $X \sim \operatorname{Bin}(n, p)$, then the p.m.f. of X is

$$
p_{X}(k)=\binom{n}{k} p^{k}(1-p)^{n-k},
$$

for all $k=0,1, \ldots, n$.

- $p^{k}(1-p)^{n-k}$ is the probability of a specific sequence of $1^{\prime} s$ and 0 's with k 1's.
- Binomial coefficient $\binom{n}{k}$ is how many of these combinations there are.

Some binomials

$\operatorname{Bin}(10,0.5)$

$\operatorname{Bin}(10,0.25)$

Discrete uniform distribution

Definition

Let C be a finite, nonempty set of numbers. If X is the number chosen randomly with all values equally likely, we say it follows the discrete uniform distribution.

- p.m.f. for a discrete uniform r.v.:

$$
p_{X}(x)= \begin{cases}1 /|C| & \text { for } x \in C \\ 0 & \text { otherwise }\end{cases}
$$

$\underset{\text { functions }}{\text { 3/ Cumulative distribution }}$

Cumulative distribution functions

Definition

The cumulative distribution function (c.d.f.) is a function $F_{X}(x)$ that returns the probability is that a variable is less than a particular value:

$$
F_{X}(x) \equiv \mathbb{P}(X \leq x)
$$

- Useful for all r.v.s since p.m.f. are unique to discrete r.v.s
- For discrete r.v.: $F_{X}(x)=\sum_{x_{j} \leq x} p_{X}\left(x_{j}\right)$

Example of discrete c.d.f

- Remember example where X is the number of treated units:

x	$\mathbb{P}(X=x)$
0	$1 / 8$
1	$3 / 8$
2	$3 / 8$
3	$1 / 8$

- Let's calculate the c.d.f., $F_{X}(x)=\mathbb{P}(X \leq x)$ for this:

$$
F_{X}(x)= \begin{cases}0 & x<0 \\ 1 / 8 & 0 \leq x<1 \\ 1 / 2 & 1 \leq x<2 \\ 7 / 8 & 2 \leq x<3 \\ 1 & x \geq 3\end{cases}
$$

- What is $F_{X}(1.4)$ here? 0.5

Graph of discrete c.d.f.

Properties of the c.d.f.

- Finding the probability of any region:
- $\mathbb{P}(a<X \leq b)=F_{X}(b)-F_{X}(a)$.
- $\mathbb{P}(X>a)=1-F_{X}(a)$
- Properties of F_{X} :

1. Increasing: if $x_{1} \leq x_{2}$ then $F_{X}\left(x_{1}\right) \leq F_{X}\left(x_{2}\right)$.

- Proof: the event $X<x_{1}$ includes the event $X<x_{2}$ so $\mathbb{P}\left(X<x_{2}\right)$ can't be smaller than $\mathbb{P}\left(X<x_{1}\right)$.

2. Converges to 0 and 1: $\lim _{x \rightarrow-\infty} F_{X}(x)=0$ and $\lim _{x \rightarrow \infty} F_{X}(x)=1$.
3. Right continuous: no jumps when we approach a point from the right:

$$
F(a)=\lim _{x \rightarrow a^{+}} F(x)
$$

4/ Functions of random variables

Transforming a random variable

- $Y=$ numbers of citizens who vote in an election in a population of 1,000.
- We could model the distribution of Y as $\operatorname{Bin}(1000, p)$.
- Allows us to make statements like $\mathbb{P}(Y \geq 500)$.
- What about the proportion turnout $X=Y / 1000$?
- Can we make statements about $\mathbb{P}(X \geq 0.5)$?

Functions of random variables

- Any function of a random variable is a also a random variable.
- $Y=g(X)$ where $g(): \mathbb{R} \rightarrow \mathbb{R}$ is the function that maps from the sample space to $\omega: g(X(\omega))$
- Let x_{1}, \ldots, x_{k} be the support of X and $y_{j}=g\left(x_{j}\right)$ be the support of Y
- If all x_{j} values map to a single y_{j} value ("one-to-one"), then we have:

$$
\mathbb{P}\left(Y=g\left(x_{j}\right)\right)=\mathbb{P}\left(g(X)=x_{j}\right)=\mathbb{P}\left(X=x_{j}\right)
$$

- If there are redundencies, we have to add those probabilities together:

$$
\mathbb{P}\left(Y=y_{j}\right)=\mathbb{P}\left(g(X)=y_{j}\right)=\sum_{x_{i} g\left(x_{i}\right)=y_{j}} \mathbb{P}\left(X=x_{i}\right)
$$

Sum vs mean vs any

- $X \sim \operatorname{Bin}(n, p):$ number of successes.
- $Y=X / n$: proportion of successes (one-to-one)
- $Z=\square(X>0):$ any successes (not one-to-one)

x	$\mathbb{P}(X=x)$	y	$\mathbb{P}(Y=y)$		
0	$1 / 8$	0	$1 / 8$	z	$\mathbb{P}(Z=z)$
1	$3 / 8$	$1 / 3$	$3 / 8$	0	$1 / 8$
2	$3 / 8$	$2 / 3$	$3 / 8$	1	$3 / 8+3 / 8+1 / 8=7 / 8$
3	$1 / 8$	1	$1 / 8$		

Careful with r.v.s

- Easy to confuse r.v.s, their distribution, events, and values the r.v.s take.
- A few common examples:
- If X and Y have the same distribution $\nRightarrow \mathbb{P}(X=Y)=1$
- Scaling an r.v. doesn't scale the p.m.f., so $Y=2 X$ does not have

$$
p_{Y}(y) \neq 2 p_{X}(x)
$$

5/ Independent random
variables

Independence of r.v.s

- Two r.v.s are independent if

$$
\mathbb{P}(X \leq x, Y \leq y)=\mathbb{P}(X \leq x) \mathbb{P}(Y \leq y)
$$

- For many r.v.s:

$$
\mathbb{P}\left(X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right)=\mathbb{P}\left(X_{1} \leq x_{1}\right) \times \cdots \times \mathbb{P}\left(X_{n} \leq x_{n}\right)
$$

- Remember: X_{1}, \ldots, X_{n} independent \Longrightarrow pairwise independent, but not vice versa.
- For discrete r.v.s (not continuous), we can write this as:

$$
\mathbb{P}(X=x, Y=y)=\mathbb{P}(X=x) \mathbb{P}(Y=y)
$$

ii.d. and the Bern/Bin connection

- Independent and identically distributed (i.i.d.) X_{1}, \ldots, X_{n}
- Identically distributed: all have the same p.m.f./c.d.f.
- Extremely common data assumption
- Story of the binomial: if $X \sim \operatorname{Bin}(n, p)$, we can write it as $X=X_{1}+\cdots+X_{n}$ where X_{i} are i.i.d. $\operatorname{Bern}(p)$.
- Theorem: If $X \sim \operatorname{Bin}(n, p)$ and $Y \sim \operatorname{Bin}(m, p)$ with X and Y independent, then $X+Y \sim \operatorname{Bin}(n+m, p)$.

Connections to data

- Statistical modeling in a nutshell:

1. Assume the data, X_{1}, X_{2}, \ldots, are i.i.d. with p.m.f. $p_{X}(x ; \theta)$ within a family of distributions (Bernoulli, binomial, etc) with parameter θ.
2. Use a function of the observed data to estimate the value of the θ : $\hat{\theta}\left(X_{1}, X_{2}, \ldots\right)$

- Example:
- Sample n respondents from population with replacement.
- $X_{1}, X_{2}, \ldots, X_{n}$: independent Bernoulli r.v.s indicating Biden approval.
- p is the Biden approval rate in the population.
- $\bar{X}=(1 / n) \sum_{i} X_{i}$ is our estimate of p. Properties?

