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Where are we? Where are we going?

• Up to now: probability of abstract events, but data is numeric!

• Connection between probability and data: random variables.

• Long-term goal: inferring the data generating process of this variable.

• What is the true Biden approval rate in the US?

• Today: given a probability distribution, what data is likely?

• If we knew the true Biden approval, what samples are likely?
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Roadmap

1. Random variables

2. Famous distributions

3. Cumulative distribution functions

4. Functions of random variables

5. Independent random variables
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1/ Random variables



What are random variables?

Definition
A random variable (r.v.) is a function that maps from the sample space of an
experiment to the real line or 𝘟 ∶ Ω → ℝ.

• Numeric representation of uncertain events⇝ we can use math!

• The r.v. is 𝘟 and the numerical value for some outcome 𝜔 is 𝘟(𝜔).

• Randomness comes from the randomness of the experiment.
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Example: sampling senators

• For any experiment, there can be many random variables.

• Randomly sample 2 senators⇝ 4 outcomes: Ω = {𝘋𝘋, 𝘙𝘋, 𝘋𝘙, 𝘙𝘙}.

• 𝘟 = number of Democrats in the two draws.
• 𝘟(𝘋𝘋) = 𝟤, 𝘟(𝘙𝘋) = 𝘟(𝘋𝘙) = 𝟣, 𝘟(𝘙𝘙) = 𝟢
• Another r.v. 𝘠 = number of Republicans in the two draws, 𝘠 = 𝟤 − 𝘟
• 𝘡 = 1 if draw is two Democrats (𝘋𝘋), 0 otherwise.

• Usually abstract away from the underlying sample space fairly quickly.
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Types of r.v.s

• Two main types of r.v.s: discrete and continuous. Focus on discrete now.

Definition
A r.v. 𝘟 is discrete the values it takes with positive probability is finite
(𝘟 ∈ {𝘹𝟣, … , 𝘹𝘬}) or countably infinite (𝘟 ∈ {𝘹𝟣, 𝘹𝟤, …}).

• The support of 𝘟 is the values 𝘹 such that ℙ(𝘟 = 𝘹) > 𝟢.
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The random in random variable

• How are r.v.s random?

• Uncertainty over Ω⇝ uncertainty over value of 𝘟 .
• We’ll use probability to formalize this uncertainty.

• The distribution of a r.v. describes its behavior in terms of probability.

• Specifies probabilities of all possible events of the r.v.
• 𝘟 = number of times a randomly chosen citizen contributed to a
campaign in 2020.

• What’s the ℙ(𝘟 > 𝟧)? ℙ(𝘟 = 𝟢)?

• Often there are many ways to express a distribution.
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Inducing probabilities

Ω
TT HT TH HH |

0
|
1

|
2

ℝ

1/4 1/4

1/4

1/4

• Let 𝘟 be the number of heads in two coin flips.

𝜔 ℙ({𝜔}) 𝘟(𝜔)
TT 1/4 0
HT 1/4 1
TH 1/4 1
HH 1/4 2

𝘹 ℙ(𝘟 = 𝘹)
0 1/4
1 1/2
2 1/4
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Expressing a distribution

• Probability mass function (p.m.f.): 𝘱𝘟 (𝘹) = ℙ(𝘟 = 𝘹)

• Careful: ℙ(𝘟 = 𝘹) makes sense b/c {𝘟 = 𝘹} is an event.
• ℙ(𝘟) doesn’t make any sense since 𝘟 is just a mapping.

• Some properties of valid p.m.f. of a discrete r.v. 𝘟 with support 𝘹𝟣, 𝘹𝟤, …:

• Nonnegative: 𝘱𝘟 (𝘹) > 𝟢 if 𝘹 ∈ 𝘹𝟣, 𝘹𝟤, … and 𝘱𝘟 (𝘹) = 𝟢 otherwise.
• Sums to 1: ∑∞

𝘫=𝟣 𝘱𝘟 (𝘹𝘫 ) = 𝟣.

• Probability of a set of values 𝘚 ⊂ {𝘹𝟣, 𝘹𝟤, …}:

ℙ(𝘟 ∈ 𝘚) = ∑
𝘹∈𝘚

𝘱𝘟 (𝘹)
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Example - random assignment to treatment
• You want to run a randomized control trial on 3 people.

• Use the following procedure:

• Flip independent fair coins for each unit
• Heads assigned to Control (C), tails to Treatment (T)

• Let 𝘟 be the number of treated units:

𝘟 =

⎧{{{
⎨{{{⎩

𝟢 if (𝘊, 𝘊, 𝘊)
𝟣 if (𝘛 , 𝘊, 𝘊) or (𝘊, 𝘛 , 𝘊) or (𝘊, 𝘊, 𝘛)
𝟤 if (𝘛 , 𝘛 , 𝘊) or (𝘊, 𝘛 , 𝘛) or (𝘛 , 𝘊, 𝘛)
𝟥 if (𝘛 , 𝘛 , 𝘛)

• Use independence and fair coins:

ℙ(𝘊, 𝘛 , 𝘊) = ℙ(𝘊)ℙ(𝘛)ℙ(𝘊) = 𝟣
𝟤 ⋅ 𝟣

𝟤 ⋅ 𝟣
𝟤 = 𝟣

𝟪
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Calculating the p.m.f.

𝘱𝘟 (𝟢)

= ℙ(𝘟 = 𝟢) = ℙ(𝘊, 𝘊, 𝘊) = 𝟣
𝟪

𝘱𝘟 (𝟣) = ℙ(𝘟 = 𝟣) = ℙ(𝘛 , 𝘊, 𝘊) + ℙ(𝘊, 𝘛 , 𝘊) + ℙ(𝘊, 𝘊, 𝘛) = 𝟥
𝟪

𝘱𝘟 (𝟤) = ℙ(𝘟 = 𝟤) = ℙ(𝘛 , 𝘛 , 𝘊) + ℙ(𝘊, 𝘛 , 𝘛) + ℙ(𝘛 , 𝘊, 𝘛) = 𝟥
𝟪

𝘱𝘟 (𝟥) = ℙ(𝘟 = 𝟥) = ℙ(𝘛 , 𝘛 , 𝘛) = 𝟣
𝟪

• What’s ℙ(𝘟 = 𝟦)? 0!
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Calculating the p.m.f.
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Plotting the p.m.f.

• We could plot this p.m.f. using R:
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• Question: Does this seem like a good way to assign treatment? What is
one major problem with it?

12 / 28



Plotting the p.m.f.

• We could plot this p.m.f. using R:

0 1 2 3

0.0

0.1

0.2

0.3

0.4

0.5

x

f(
x)

• Question: Does this seem like a good way to assign treatment? What is
one major problem with it?

12 / 28



2/ Famous distributions



Bernoulli distribution

Definition
An r.v. 𝘟 has a Bernoulli distribution with parameter 𝘱 if ℙ(𝘟 = 𝟣) = 𝘱 and
𝘗(𝘟 = 𝟢) = 𝟣 − 𝘱 and this is written as 𝘟 ∼ Bern(𝘱).

• Story: indicator of success in some trial with
either success or failure.

• Actually a family of distributions indexed by 𝘱.
• Any event 𝘈 has an associated Bernoulli r.v.:
indicator variable:

𝕀(𝘈) ∼ Bern(𝘱) with 𝘱 = ℙ(𝘈)
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Binomial distribution

Definition
Let 𝘟 be the number of successes in 𝘯 independent Bernoulli trials all with
success probability 𝘱. Then 𝘟 follows the binomial distribution with
parameters 𝘯 and 𝘱, which is written 𝘟 ∼ Bin(𝘯, 𝘱).

• Definition is based on a story: helps pattern match to our data.

• Also helps draw immediate connections:

• Bin(𝟣, 𝘱) ∼ Bern(p).
• If 𝘟 ∼ Bin(𝘯, 𝘱), then 𝘯 − 𝘟 ∼ Bin(𝘯, 𝟣 − 𝘱).
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Binomial p.m.f.

Binomial p.m.f.

If 𝘟 ∼ Bin(𝘯, 𝘱), then the p.m.f. of 𝘟 is

𝘱𝘟 (𝘬) = (𝘯
𝘬)𝘱𝘬(𝟣 − 𝘱)𝘯−𝘬 ,

for all 𝘬 = 𝟢, 𝟣, … , 𝘯.

• 𝘱𝘬(𝟣 − 𝘱)𝘯−𝘬 is the probability of a specific sequence of 1’s and 0’s with
𝘬 1’s.

• Binomial coefficient (𝘯
𝘬) is how many of these combinations there are.
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Some binomials
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Discrete uniform distribution

Definition
Let 𝘊 be a finite, nonempty set of numbers. If 𝘟 is the number chosen
randomly with all values equally likely, we say it follows the discrete uniform
distribution.
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• p.m.f. for a discrete uniform r.v.:

𝘱𝘟 (𝘹) =
⎧{
⎨{⎩

𝟣/|𝘊| for 𝘹 ∈ 𝘊
𝟢 otherwise
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3/ Cumulative distribution
functions



Cumulative distribution functions

Definition
The cumulative distribution function (c.d.f.) is a function 𝘍𝘟 (𝘹) that returns
the probability is that a variable is less than a particular value:

𝘍𝘟 (𝘹) ≡ ℙ(𝘟 ≤ 𝘹).

• Useful for all r.v.s since p.m.f. are unique to discrete r.v.s

• For discrete r.v.: 𝘍𝘟 (𝘹) = ∑𝘹𝘫 ≤𝘹 𝘱𝘟 (𝘹𝘫)
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Example of discrete c.d.f
• Remember example where 𝘟 is the number of treated units:

𝘹 ℙ(𝘟 = 𝘹)
0 1/8
1 3/8
2 3/8
3 1/8

• Let’s calculate the c.d.f., 𝘍𝘟 (𝘹) = ℙ(𝘟 ≤ 𝘹) for this:

𝘍𝘟 (𝘹) =

⎧{{{{
⎨{{{{⎩

𝟢 𝘹 < 𝟢
𝟣/𝟪 𝟢 ≤ 𝘹 < 𝟣
𝟣/𝟤 𝟣 ≤ 𝘹 < 𝟤
𝟩/𝟪 𝟤 ≤ 𝘹 < 𝟥
𝟣 𝘹 ≥ 𝟥

• What is 𝘍𝘟 (𝟣.𝟦) here? 0.5
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Graph of discrete c.d.f.
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Properties of the c.d.f.

• Finding the probability of any region:

• ℙ(𝘢 < 𝘟 ≤ 𝘣) = 𝘍𝘟 (𝘣) − 𝘍𝘟 (𝘢).
• ℙ(𝘟 > 𝘢) = 𝟣 − 𝘍𝘟 (𝘢)

• Properties of 𝘍𝘟 :

1. Increasing: if 𝘹𝟣 ≤ 𝘹𝟤 then 𝘍𝘟 (𝘹𝟣) ≤ 𝘍𝘟 (𝘹𝟤).

• Proof: the event 𝘟 < 𝘹𝟣 includes the event 𝘟 < 𝘹𝟤 so ℙ(𝘟 < 𝘹𝟤) can’t be
smaller than ℙ(𝘟 < 𝘹𝟣).

2. Converges to 0 and 1: lim𝘹→−∞ 𝘍𝘟 (𝘹) = 𝟢 and lim𝘹→∞ 𝘍𝘟 (𝘹) = 𝟣.

3. Right continuous: no jumps when we approach a point from the right:

𝘍(𝘢) = lim
𝘹→𝘢+

𝘍(𝘹)
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𝘍(𝘢) = lim
𝘹→𝘢+

𝘍(𝘹)
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4/ Functions of random
variables



Transforming a random variable

• 𝘠 = numbers of citizens who vote in an election in a population of
1,000.

• We could model the distribution of 𝘠 as Bin(𝟣𝟢𝟢𝟢, 𝘱).

• Allows us to make statements like ℙ(𝘠 ≥ 𝟧𝟢𝟢).

• What about the proportion turnout 𝘟 = 𝘠 /𝟣𝟢𝟢𝟢?

• Can we make statements about ℙ(𝘟 ≥ 𝟢.𝟧)?
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Functions of random variables

• Any function of a random variable is a also a random variable.

• 𝘠 = 𝘨(𝘟) where 𝘨() ∶ ℝ → ℝ is the function that maps from the sample
space to 𝜔 ∶ 𝘨(𝘟(𝜔))

• Let 𝘹𝟣, … , 𝘹𝘬 be the support of 𝘟 and 𝘺𝘫 = 𝘨(𝘹𝘫 ) be the support of 𝘠

• If all 𝘹𝘫 values map to a single 𝘺𝘫 value (“one-to-one”), then we have:

ℙ(𝘠 = 𝘨(𝘹𝘫)) = ℙ(𝘨(𝘟) = 𝘹𝘫) = ℙ(𝘟 = 𝘹𝘫)

• If there are redundencies, we have to add those probabilities together:

ℙ(𝘠 = 𝘺𝘫) = ℙ(𝘨(𝘟) = 𝘺𝘫) = ∑
𝘹𝘪 ∶𝘨(𝘹𝘪 )=𝘺𝘫

ℙ(𝘟 = 𝘹𝘪 )
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Sum vs mean vs any

• 𝘟 ∼ Bin(𝘯, 𝘱): number of successes.

• 𝘠 = 𝘟/𝘯: proportion of successes (one-to-one)

• 𝘡 = 𝕀(𝘟 > 𝟢): any successes (not one-to-one)

𝘹 ℙ(𝘟 = 𝘹)
0 1/8
1 3/8
2 3/8
3 1/8

𝘺 ℙ(𝘠 = 𝘺)
0 1/8
1/3 3/8
2/3 3/8
1 1/8

𝘻 ℙ(𝘡 = 𝘻)
0 1/8
1 3/8 + 3/8 + 1/8 = 7/8
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Careful with r.v.s

• Easy to confuse r.v.s, their distribution, events, and values the r.v.s take.

• A few common examples:

• If 𝘟 and 𝘠 have the same distribution ⇏ ℙ(𝘟 = 𝘠 ) = 𝟣
• Scaling an r.v. doesn’t scale the p.m.f., so 𝘠 = 𝟤𝘟 does not have

𝘱𝘠 (𝘺) ≠ 𝟤𝘱𝘟 (𝘹)
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5/ Independent random
variables



Independence of r.v.s

• Two r.v.s are independent if

ℙ(𝘟 ≤ 𝘹, 𝘠 ≤ 𝘺) = ℙ(𝘟 ≤ 𝘹)ℙ(𝘠 ≤ 𝘺)

• For many r.v.s:

ℙ(𝘟𝟣 ≤ 𝘹𝟣, … , 𝘟𝘯 ≤ 𝘹𝘯) = ℙ(𝘟𝟣 ≤ 𝘹𝟣) × ⋯ × ℙ(𝘟𝘯 ≤ 𝘹𝘯)

• Remember: 𝘟𝟣, … , 𝘟𝘯 independent ⟹ pairwise independent, but not
vice versa.

• For discrete r.v.s (not continuous), we can write this as:

ℙ(𝘟 = 𝘹, 𝘠 = 𝘺) = ℙ(𝘟 = 𝘹)ℙ(𝘠 = 𝘺)
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i.i.d. and the Bern/Bin connection

• Independent and identically distributed (i.i.d.) 𝘟𝟣, … , 𝘟𝘯

• Identically distributed: all have the same p.m.f./c.d.f.
• Extremely common data assumption

• Story of the binomial: if 𝘟 ∼ Bin(𝘯, 𝘱), we can write it as
𝘟 = 𝘟𝟣 + ⋯ + 𝘟𝘯 where 𝘟𝘪 are i.i.d. Bern(𝘱).

• Theorem: If 𝘟 ∼ Bin(𝘯, 𝘱) and 𝘠 ∼ Bin(𝘮, 𝘱) with 𝘟 and 𝘠
independent, then 𝘟 + 𝘠 ∼ Bin(𝘯 + 𝘮, 𝘱).
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Connections to data

• Statistical modeling in a nutshell:

1. Assume the data, 𝘟𝟣, 𝘟𝟤, …, are i.i.d. with p.m.f. 𝘱𝘟 (𝘹; 𝜃) within a family of
distributions (Bernoulli, binomial, etc) with parameter 𝜃.

2. Use a function of the observed data to estimate the value of the 𝜃:
̂𝜃(𝘟𝟣, 𝘟𝟤, …)

• Example:

• Sample 𝘯 respondents from population with replacement.
• 𝘟𝟣, 𝘟𝟤, … , 𝘟𝘯 : independent Bernoulli r.v.s indicating Biden approval.
• 𝘱 is the Biden approval rate in the population.
• 𝘟 = (𝟣/𝘯) ∑𝘪 𝘟𝘪 is our estimate of 𝘱. Properties?
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