2: Conditional Probability

Fall 2023

Matthew Blackwell
Gov 2002 (Harvard)

Roadmap

1. Conditional Probability
2. Bayes's Rule
3. Independence

1/ Conditional Probability

Conditional probability

- Conditional probability: if we know that B has occurred, what is the probability of A ?
- Conditioning our analysis on B having occurred.
- Examples:
- What is probability of two states going to war if they are both democracies?
- What is the probability of a judge ruling in a pro-choice direction conditional on having daughters?
- What is the probability that there will be a coup in a country conditional on having a presidential system?
- Conditional probability is the cornerstone of quantitative social science.

Conditional Probability definition

- Definition: If $\mathbb{P}(B)>0$ then the conditional probability of A given B is

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}
$$

- How often A and B occur divided by how often B occurs.
- WARNING! $\mathbb{P}(A \mid B)$ does not, in general, equal $\mathbb{P}(B \mid A)$.
- \mathbb{P} (smart | in gov 2002) is high
- $\mathbb{P}($ in gov $2002 \mid$ smart $)$ is low.
- There are many many smart people who are not in this class!
- Also known as the prosecutor's fallacy

Intuition

Examples

$A=\{$ you get an A grade $\} \quad B=\{$ everyone gets an A grade $\}$

- If B occurs then A must also occur, so $\operatorname{Pr}(A \mid B)=1$.
- Does this mean that $\operatorname{Pr}(B \mid A)=1$ as well?
- Now let $A=\{$ you get a B grade $\}$.
- The intersection $A \cap B=\emptyset$, so that $\operatorname{Pr}(A \mid B)=0$.
- Intuitively, it's because B occurring precludes A from occurring.

U.S. Senate example

	Democrats	Republicans	Independents	Total
Men	33	40	2	75
Women	15	9	1	25
Total	48	49	3	100

- Choose one senator at random from this population
- What is the probability that a randomly selected Republican is a Woman:
- $\mathbb{P}($ Woman \mid Republican $)=\frac{\mathbb{P}(\text { Woman } \cap \text { Republican })}{\mathbb{P}(\text { Republican })}=\frac{9 / 100}{49 / 100}=\frac{9}{49}=0.184$
- Choose two senators at random:
- $\mathbb{P}(2$ women \mid one draw is a woman $)$?
- $\mathbb{P}(2$ women | one draw is a Liz Warren)?

Conditional probabilities are probabilities

- Condition probabilities $\mathbb{P}(A \mid B)$ are valid probability functions:

1. $\mathbb{P}(A \mid B) \geq 0$
2. $\mathbb{P}(\Omega \mid B)=1$
3. If A_{1} and A_{2} are disjoint, then $\mathbb{P}\left(A_{1} \cup A_{2} \mid B\right)=\mathbb{P}\left(A_{1} \mid B\right)+\mathbb{P}\left(A_{2} \mid B\right)$

- \rightsquigarrow rules of probability apply to left-hand side of conditioning bar (A)
- All probabilities normalized to event $B, \mathbb{P}(B \mid B)=1$.
- Not for right-hand side, so even if B and C are disjoint,

$$
\mathbb{P}(A \mid B \cup C) \neq \mathbb{P}(A \mid B)+\mathbb{P}(A \mid C)
$$

Joint probabilities from conditionals

- Joint probabilities: probability of two events occurring (intersections)
- Often replace \cap with commas: $\mathbb{P}(A \cap B \cap C)=\mathbb{P}(A, B, C)$
- Definition of conditional prob. implies:

$$
\mathbb{P}(A \cap B) \equiv \mathbb{P}(A, B)=\mathbb{P}(B) \mathbb{P}(A \mid B)=\mathbb{P}(A) \mathbb{P}(B \mid A)
$$

-What about three events?

$$
\mathbb{P}(A, B, C)=\mathbb{P}(A) \mathbb{P}(B \mid A) \mathbb{P}(C \mid A, B)
$$

- Generalize to the intersection of N events:

$$
\mathbb{P}\left(A_{1}, \ldots, A_{N}\right)=\mathbb{P}\left(A_{1}\right) \mathbb{P}\left(A_{2} \mid A_{1}\right) \mathbb{P}\left(A_{3} \mid A_{1}, A_{2}\right) \cdots \mathbb{P}\left(A_{N} \mid A_{1}, \ldots, A_{N-1}\right)
$$

Joint probabilities, example

- Draw three cards at random from a deck without replacement.
-What's the probability that we draw three Aces?

$$
\mathbb{P}\left(\mathrm{Ace}_{1} \cap \mathrm{Ace}_{2} \cap \mathrm{Ace}_{3}\right)=\mathbb{P}\left(\mathrm{Ace}_{1}\right) \mathbb{P}\left(\mathrm{Ace}_{2} \mid \mathrm{Ace}_{1}\right) \mathbb{P}\left(\mathrm{Ace}_{3} \mid \mathrm{Ace}_{2} \cap \mathrm{Ace}_{1}\right)
$$

- What are these probabilities?
- 4 Aces to pick out of 52 cards $\rightsquigarrow \mathbb{P}\left(\right.$ Ace $\left._{1}\right)=\frac{4}{52}$
- 3 Aces left in the 51 remaining cards $\rightsquigarrow \mathbb{P}\left(\mathrm{Ace}_{2} \mid \mathrm{Ace}_{1}\right)=\frac{3}{51}$
- 2 Aces left in the 50 remaining cards $\rightsquigarrow \mathbb{P}\left(\right.$ Ace $\left._{3} \mid A c e_{2} \cap \mathrm{Ace}_{1}\right)=\frac{2}{50}$
- Thus, $\mathbb{P}\left(\mathrm{Ace}_{1} \cap \mathrm{Ace}_{2} \cap \mathrm{Ace}_{3}\right)=\frac{4}{52} \times \frac{3}{51} \times \frac{2}{50}=0.00018$

Probability of war resolution

- Suppose we observed country-dyads over 3 years
- In each year the dyad can be at war $\left(W_{t}\right)$ or at peace $\left(P_{t}\right)$.
-What's the probability that a war starts in year 1 ends after 2 years?

$$
\mathbb{P}\left(W_{1}, W_{2}, P_{3}\right)=\mathbb{P}\left(W_{1}\right) \mathbb{P}\left(W_{2} \mid W_{1}\right) \mathbb{P}\left(P_{3} \mid W_{1}, W_{2}\right)
$$

- Actual Research Question ${ }^{\mathrm{TM}}$: modeling the continuation probability of war, $\mathbb{P}\left(W_{2} \mid W_{1}\right)$ and the probability of conflict resolution, $\mathbb{P}\left(P_{3} \mid W_{1}, W_{2}\right)$.

Law of Total Probability

- Often we only have disaggregated probabilities.
- B = sampling a Trump supporter from either Cambridge or Somerville.
- We know the prop. of Trump supporters in each city from precinct data.
- How to calculate the overall probability of B ?
- A partition is a set of mutually disjoint events whose union is Ω.
- The law of total probability (LTP) states if A_{1}, \ldots, A_{k} is a partition:

$$
\mathbb{P}(B)=\sum_{j=1}^{k} \mathbb{P}\left(B \mid A_{j}\right) \mathbb{P}\left(A_{j}\right)
$$

- Overall probability = weighted sum of within-partition probabilities
- Weights are the probability of the particular partition

A mixture of cities

- Randomly drawing voters from either Cambridge or Somerville:
- Camb. had 50k voters and Somer. had around 40k, so:
- $\operatorname{Pr}($ Camb. $)=0.56$ and so $\operatorname{Pr}($ Somer. $)=0.44$
- The state provides the following election results for each city:
- $\operatorname{Pr}(\operatorname{Trump} \mid C a m b)=$.
- $\operatorname{Pr}($ Trump \mid Somer. $)=0.103$
- To get the overall turnout rate, \mathbb{P} (Trump), we can apply the LTP:

$$
\begin{aligned}
\operatorname{Pr}(\text { Trump }) & =\operatorname{Pr}(\text { Trump } \mid \text { Camb. }) \operatorname{Pr}(\text { Camb. })+\operatorname{Pr}(\text { Trump } \mid \text { Somer. }) \operatorname{Pr}(\text { Somer. }) \\
& =0.066 \times 0.56+0.103 \times 0.44 \\
& =0.082
\end{aligned}
$$

2/ Bayes's Rule

QAnon

You meet a man named Steve and he tells you that he is a Republican. You have been interested in meeting someone who believes in the QAnon conspiracy theory. Given what you know about Steve, would you guess that he believes in QAnon or not?

- Common response: probably believes in QAnon since believers tend to be Republicans.
- Base rate fallacy: ignores how uncommon QAnon believers are!

Visualizing QAnon support

Chance a random Republican believes $\mathrm{QAnon}=\frac{\mathbb{P}(R \mid Q) \mathbb{P}(Q)}{\mathbb{P}(R \mid Q) \mathbb{P}(Q)+\mathbb{P}(R \mid \text { not } Q) \mathbb{P}(\text { not } Q)}$

Bayes' rule

- Reverend Thomas Bayes (1701-61): English minister and statistician
- Bayes' rule: if $\mathbb{P}(B)>0$, then:

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(B \mid A) \mathbb{P}(A)}{\mathbb{P}(B)}=\frac{\mathbb{P}(B \mid A) \mathbb{P}(A)}{\mathbb{P}(B \mid A) \mathbb{P}(A)+\mathbb{P}\left(B \mid A^{c}\right) \mathbb{P}\left(A^{c}\right)}
$$

Why is Bayes' rule useful?

-What is the probability of some hypothesis given some evidence?

- $\mathbb{P}($ QAnon \mid Republican $)$?
- Often easier to know probability of evidence given hypothesis.
- \mathbb{P} (Republican | QAnon)
- Combine this with the prior probability of the hypothesis.
- Prior: $\mathbb{P}($ QAnon $)$
- Posterior: $\mathbb{P}($ QAnon | Republican $)$
- Applying Bayes' rule is often called updating the prior.
- $\mathbb{P}($ QAnon $) \rightsquigarrow \mathbb{P}($ QAnon | Republican $)$
- How does the evidence change the chance of the hypothesis being true?

Uses of Bayes' rule

- Medical testing:
- Want to know: \mathbb{P} (Disease | Test Positive)
- Have: \mathbb{P} (Test Positive | Disease) and \mathbb{P} (Disease)
- Predicting traits from names:
- Want to know: \mathbb{P} (African American | Last Name)
- Have: $\mathbb{P}($ Last Name | African American) and \mathbb{P} (African American)
- Spam filtering:
- Want to know: \mathbb{P} (Spam | Email text)
- Have: $\mathbb{P}($ Email text \mid Spam $)$ and $\mathbb{P}($ Spam $)$

Medical tests

- Suppose you go and get a COVID-19 test and it comes back positive!
- Let a positive test be PT.
- What's the probability you actually have COVID-19?
- Let having COVID be labeled C.
- Question: What is $\mathbb{P}(C \mid P T)$?
- Components for calculating Bayes' rule:
- $\mathbb{P}(P T \mid C)=0.8$: true positive rate
- $\mathbb{P}\left(P T \mid C^{c}\right)=0.005$: false positive rate
- $\mathbb{P}(C)=0.007$ rough prevalance of active COVID cases.

Applying Bayes' rule to COVID tests

- Use the law of total probability to get the denominator:

$$
\begin{aligned}
\mathbb{P}(P T) & =\mathbb{P}(P T \mid C) \mathbb{P}(C)+\mathbb{P}\left(P T \mid C^{c}\right) \mathbb{P}\left(C^{c}\right) \\
& =(0.8 \times 0.007)+(0.005 \times 0.993) \\
& =0.011
\end{aligned}
$$

- Now plug in all values to Bayes' rule:

$$
\mathbb{P}(C \mid P T)=\frac{\mathbb{P}(P T \mid C) \mathbb{P}(C)}{\mathbb{P}(P T)}=\frac{0.8 \times 0.007}{0.0106} \approx 0.53
$$

- If false positive rate goes up to $1 \% \rightsquigarrow \mathbb{P}(C \mid P T) \approx 0.36$

3/ Independence

Independence

- Heart of Bayes's rule: knowing B occurs often changes probability of A.
- What if B provides no information? \rightsquigarrow independence
- Two events A and B are independent if $\mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)$
- Sometimes written as $A \Perp B$
- Symmetric: $A \Perp B$ equivalent to $B \Perp A$
- Events that are not independent are dependent.
- Important consequence: if $A \Perp B$ and $\mathbb{P}(B)>0$ then:

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}=\frac{\mathbb{P}(A) \mathbb{P}(B)}{\mathbb{P}(B)}=\mathbb{P}(A)
$$

- Knowing B occurs has no impact on the probability of A.
- Works other way too: if $P(A)>0$ and $A \Perp B \rightsquigarrow \mathbb{P}(B \mid A)=\mathbb{P}(B)$.
- Common misunderstanding: independent is different than disjoint!
- Mutually exclusive events provide information!

Independence example

- If we have a gathering of size n drawn randomly from population of MA with current COVID infection rate of 1.37%, what's the probability someone in attendance is infected?
- When seeing "prob. of at least one" \rightsquigarrow work with complement:
\mathbb{P} (At least one COVID case at gathering)
$=1-\mathbb{P}($ No COVID cases at gathering $)$

Independence and random sampling

- How we draw the random sample matters:
- Sample $n>1$ with replacement \rightsquigarrow independent events
- Sample $n>1$ without replacement \rightsquigarrow dependent events
- Sampling with replacement n for gathering:
\mathbb{P} (No COVID cases at gathering)

$$
\begin{aligned}
& =\mathbb{P}(\text { No COVID for Person } 1 \cap \cdots \cap \text { No COVID for Person } n) \\
& =\mathbb{P}(\text { No COVID for Person } 1) \cdots \mathbb{P}(\text { No COVID for Person } n) \\
& =(1-0.007)^{n}
\end{aligned}
$$

- Using the complement:
$\mathbb{P}($ At least one COVID case at gathering $)=1-(1-0.007)^{n}$
- $n=5 \rightsquigarrow$ prob of 0.035
- $n=100 \rightsquigarrow$ prob of 0.5

Conditional independence

- A and B are conditionally independent given E if

$$
\mathbb{P}(A \cap B \mid E)=\mathbb{P}(A \mid E) \mathbb{P}(B \mid E)
$$

- Massively important in statistics and causal inference.
- Warning: independence \neq conditional independence.
- Cond. ind. \nRightarrow ind.: flipping a coin with unknown bias.
- Ind. \nRightarrow cond. ind.: test scores, athletics, and college admission.

