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Roadmap

1. Conditional Probability

2. Bayes’s Rule

3. Independence
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1/ Conditional Probability



Conditional probability

• Conditional probability: if we know that 𝘉 has occurred, what is the
probability of 𝘈?

• Conditioning our analysis on 𝘉 having occurred.

• Examples:

• What is probability of two states going to war if they are both
democracies?

• What is the probability of a judge ruling in a pro-choice direction
conditional on having daughters?

• What is the probability that there will be a coup in a country conditional
on having a presidential system?

• Conditional probability is the cornerstone of quantitative social
science.
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Conditional Probability definition

• Definition: If ℙ(𝘉) > 𝟢 then the conditional probability of 𝘈 given 𝘉 is

ℙ(𝘈|𝘉) = ℙ(𝘈 ∩ 𝘉)
ℙ(𝘉)

• How often 𝘈 and 𝘉 occur divided by how often 𝘉 occurs.

• WARNING! ℙ(𝘈|𝘉) does not, in general, equal ℙ(𝘉|𝘈).

• ℙ(smart | in gov 2002) is high
• ℙ(in gov 2002 | smart) is low.
• There are many many smart people who are not in this class!
• Also known as the prosecutor’s fallacy
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Intuition

Ω𝘈

𝘉
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Examples

𝘈 = {you get an A grade}

𝘉 = {everyone gets an A grade}

• If 𝘉 occurs then 𝘈 must also occur, so Pr(𝘈|𝘉) = 𝟣.

• Does this mean that Pr(𝘉|𝘈) = 𝟣 as well?

• Now let 𝘈 = {you get a B grade}.

• The intersection 𝘈 ∩ 𝘉 = ∅, so that Pr(𝘈|𝘉) = 𝟢.
• Intuitively, it’s because 𝘉 occurring precludes 𝘈 from occurring.
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U.S. Senate example

Democrats Republicans Independents Total
Men 33 40 2 75

Women 15 9 1 25
Total 48 49 3 100

• Choose one senator at random from this population

• What is the probability that a randomly selected Republican is a
Woman:

• ℙ(Woman ∣ Republican)

= ℙ(Woman ∩ Republican)
ℙ( Republican) = 𝟫/𝟣𝟢𝟢

𝟦𝟫/𝟣𝟢𝟢 = 𝟫
𝟦𝟫 = 𝟢.𝟣𝟪𝟦

• Choose two senators at random:

• ℙ(2 women ∣ one draw is a woman)?
• ℙ(2 women ∣ one draw is a Liz Warren)?
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Conditional probabilities are probabilities

• Condition probabilities ℙ(𝘈|𝘉) are valid probability functions:

1. ℙ(𝘈|𝘉) ≥ 𝟢
2. ℙ(Ω|𝘉) = 𝟣
3. If 𝘈𝟣 and 𝘈𝟤 are disjoint, then ℙ(𝘈𝟣 ∪ 𝘈𝟤|𝘉) = ℙ(𝘈𝟣|𝘉) + ℙ(𝘈𝟤|𝘉)

• ⇝ rules of probability apply to left-hand side of conditioning bar (𝘈)

• All probabilities normalized to event 𝘉, ℙ(𝘉 ∣ 𝘉) = 𝟣.

• Not for right-hand side, so even if 𝘉 and 𝘊 are disjoint,

ℙ(𝘈|𝘉 ∪ 𝘊) ≠ ℙ(𝘈|𝘉) + ℙ(𝘈|𝘊)
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Joint probabilities from conditionals

• Joint probabilities: probability of two events occurring (intersections)

• Often replace ∩ with commas: ℙ(𝘈 ∩ 𝘉 ∩ 𝘊) = ℙ(𝘈, 𝘉, 𝘊)

• Definition of conditional prob. implies:

ℙ(𝘈 ∩ 𝘉) ≡ ℙ(𝘈, 𝘉) = ℙ(𝘉)ℙ(𝘈 ∣ 𝘉) = ℙ(𝘈)ℙ(𝘉 ∣ 𝘈)

• What about three events?

ℙ(𝘈, 𝘉, 𝘊) = ℙ(𝘈)ℙ(𝘉 ∣ 𝘈)ℙ(𝘊 ∣ 𝘈, 𝘉)

• Generalize to the intersection of 𝘕 events:

ℙ(𝘈𝟣, … , 𝘈𝘕) = ℙ(𝘈𝟣)ℙ(𝘈𝟤 ∣ 𝘈𝟣)ℙ(𝘈𝟥 ∣ 𝘈𝟣, 𝘈𝟤) ⋯ ℙ(𝘈𝘕 ∣ 𝘈𝟣, … , 𝘈𝘕−𝟣)

9 / 24



Joint probabilities from conditionals

• Joint probabilities: probability of two events occurring (intersections)

• Often replace ∩ with commas: ℙ(𝘈 ∩ 𝘉 ∩ 𝘊) = ℙ(𝘈, 𝘉, 𝘊)

• Definition of conditional prob. implies:

ℙ(𝘈 ∩ 𝘉) ≡ ℙ(𝘈, 𝘉) = ℙ(𝘉)ℙ(𝘈 ∣ 𝘉) = ℙ(𝘈)ℙ(𝘉 ∣ 𝘈)

• What about three events?

ℙ(𝘈, 𝘉, 𝘊) = ℙ(𝘈)ℙ(𝘉 ∣ 𝘈)ℙ(𝘊 ∣ 𝘈, 𝘉)

• Generalize to the intersection of 𝘕 events:

ℙ(𝘈𝟣, … , 𝘈𝘕) = ℙ(𝘈𝟣)ℙ(𝘈𝟤 ∣ 𝘈𝟣)ℙ(𝘈𝟥 ∣ 𝘈𝟣, 𝘈𝟤) ⋯ ℙ(𝘈𝘕 ∣ 𝘈𝟣, … , 𝘈𝘕−𝟣)

9 / 24



Joint probabilities from conditionals

• Joint probabilities: probability of two events occurring (intersections)

• Often replace ∩ with commas: ℙ(𝘈 ∩ 𝘉 ∩ 𝘊) = ℙ(𝘈, 𝘉, 𝘊)

• Definition of conditional prob. implies:

ℙ(𝘈 ∩ 𝘉) ≡ ℙ(𝘈, 𝘉) = ℙ(𝘉)ℙ(𝘈 ∣ 𝘉) = ℙ(𝘈)ℙ(𝘉 ∣ 𝘈)

• What about three events?

ℙ(𝘈, 𝘉, 𝘊) = ℙ(𝘈)ℙ(𝘉 ∣ 𝘈)ℙ(𝘊 ∣ 𝘈, 𝘉)

• Generalize to the intersection of 𝘕 events:

ℙ(𝘈𝟣, … , 𝘈𝘕) = ℙ(𝘈𝟣)ℙ(𝘈𝟤 ∣ 𝘈𝟣)ℙ(𝘈𝟥 ∣ 𝘈𝟣, 𝘈𝟤) ⋯ ℙ(𝘈𝘕 ∣ 𝘈𝟣, … , 𝘈𝘕−𝟣)

9 / 24



Joint probabilities from conditionals

• Joint probabilities: probability of two events occurring (intersections)

• Often replace ∩ with commas: ℙ(𝘈 ∩ 𝘉 ∩ 𝘊) = ℙ(𝘈, 𝘉, 𝘊)

• Definition of conditional prob. implies:

ℙ(𝘈 ∩ 𝘉) ≡ ℙ(𝘈, 𝘉) = ℙ(𝘉)ℙ(𝘈 ∣ 𝘉) = ℙ(𝘈)ℙ(𝘉 ∣ 𝘈)

• What about three events?

ℙ(𝘈, 𝘉, 𝘊) = ℙ(𝘈)ℙ(𝘉 ∣ 𝘈)ℙ(𝘊 ∣ 𝘈, 𝘉)

• Generalize to the intersection of 𝘕 events:

ℙ(𝘈𝟣, … , 𝘈𝘕) = ℙ(𝘈𝟣)ℙ(𝘈𝟤 ∣ 𝘈𝟣)ℙ(𝘈𝟥 ∣ 𝘈𝟣, 𝘈𝟤) ⋯ ℙ(𝘈𝘕 ∣ 𝘈𝟣, … , 𝘈𝘕−𝟣)

9 / 24



Joint probabilities from conditionals

• Joint probabilities: probability of two events occurring (intersections)

• Often replace ∩ with commas: ℙ(𝘈 ∩ 𝘉 ∩ 𝘊) = ℙ(𝘈, 𝘉, 𝘊)

• Definition of conditional prob. implies:

ℙ(𝘈 ∩ 𝘉) ≡ ℙ(𝘈, 𝘉) = ℙ(𝘉)ℙ(𝘈 ∣ 𝘉) = ℙ(𝘈)ℙ(𝘉 ∣ 𝘈)

• What about three events?

ℙ(𝘈, 𝘉, 𝘊) = ℙ(𝘈)ℙ(𝘉 ∣ 𝘈)ℙ(𝘊 ∣ 𝘈, 𝘉)

• Generalize to the intersection of 𝘕 events:

ℙ(𝘈𝟣, … , 𝘈𝘕) = ℙ(𝘈𝟣)ℙ(𝘈𝟤 ∣ 𝘈𝟣)ℙ(𝘈𝟥 ∣ 𝘈𝟣, 𝘈𝟤) ⋯ ℙ(𝘈𝘕 ∣ 𝘈𝟣, … , 𝘈𝘕−𝟣)

9 / 24



Joint probabilities from conditionals

• Joint probabilities: probability of two events occurring (intersections)

• Often replace ∩ with commas: ℙ(𝘈 ∩ 𝘉 ∩ 𝘊) = ℙ(𝘈, 𝘉, 𝘊)

• Definition of conditional prob. implies:

ℙ(𝘈 ∩ 𝘉) ≡ ℙ(𝘈, 𝘉) = ℙ(𝘉)ℙ(𝘈 ∣ 𝘉) = ℙ(𝘈)ℙ(𝘉 ∣ 𝘈)

• What about three events?

ℙ(𝘈, 𝘉, 𝘊) = ℙ(𝘈)ℙ(𝘉 ∣ 𝘈)ℙ(𝘊 ∣ 𝘈, 𝘉)

• Generalize to the intersection of 𝘕 events:

ℙ(𝘈𝟣, … , 𝘈𝘕) = ℙ(𝘈𝟣)ℙ(𝘈𝟤 ∣ 𝘈𝟣)ℙ(𝘈𝟥 ∣ 𝘈𝟣, 𝘈𝟤) ⋯ ℙ(𝘈𝘕 ∣ 𝘈𝟣, … , 𝘈𝘕−𝟣)

9 / 24



Joint probabilities, example

• Draw three cards at random from a deck without replacement.

• What’s the probability that we draw three Aces?

ℙ(Ace𝟣 ∩ Ace𝟤 ∩ Ace𝟥) = ℙ(Ace𝟣)ℙ(Ace𝟤 ∣ Ace𝟣)ℙ(Ace𝟥 ∣ Ace𝟤 ∩ Ace𝟣)

• What are these probabilities?

• 4 Aces to pick out of 52 cards ⇝ ℙ(Ace𝟣) = 𝟦
𝟧𝟤

• 3 Aces left in the 51 remaining cards ⇝ ℙ(Ace𝟤 ∣ Ace𝟣) = 𝟥
𝟧𝟣

• 2 Aces left in the 50 remaining cards ⇝ ℙ(Ace𝟥 ∣ Ace𝟤 ∩ Ace𝟣) = 𝟤
𝟧𝟢

• Thus, ℙ(Ace𝟣 ∩ Ace𝟤 ∩ Ace𝟥) = 𝟦
𝟧𝟤 × 𝟥

𝟧𝟣 × 𝟤
𝟧𝟢 = 𝟢.𝟢𝟢𝟢𝟣𝟪
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Probability of war resolution

• Suppose we observed country-dyads over 3 years

• In each year the dyad can be at war (𝘞𝘵 ) or at peace (𝘗𝘵 ).

• What’s the probability that a war starts in year 1 ends after 2 years?

ℙ(𝘞𝟣, 𝘞𝟤, 𝘗𝟥) = ℙ(𝘞𝟣)ℙ(𝘞𝟤 ∣ 𝘞𝟣)ℙ(𝘗𝟥 ∣ 𝘞𝟣, 𝘞𝟤)

• Actual Research QuestionTM: modeling the continuation probability of
war, ℙ(𝘞𝟤 ∣ 𝘞𝟣) and the probability of conflict resolution,
ℙ(𝘗𝟥 ∣ 𝘞𝟣, 𝘞𝟤).

11 / 24



Probability of war resolution

• Suppose we observed country-dyads over 3 years

• In each year the dyad can be at war (𝘞𝘵 ) or at peace (𝘗𝘵 ).

• What’s the probability that a war starts in year 1 ends after 2 years?

ℙ(𝘞𝟣, 𝘞𝟤, 𝘗𝟥) = ℙ(𝘞𝟣)ℙ(𝘞𝟤 ∣ 𝘞𝟣)ℙ(𝘗𝟥 ∣ 𝘞𝟣, 𝘞𝟤)

• Actual Research QuestionTM: modeling the continuation probability of
war, ℙ(𝘞𝟤 ∣ 𝘞𝟣) and the probability of conflict resolution,
ℙ(𝘗𝟥 ∣ 𝘞𝟣, 𝘞𝟤).

11 / 24



Probability of war resolution

• Suppose we observed country-dyads over 3 years

• In each year the dyad can be at war (𝘞𝘵 ) or at peace (𝘗𝘵 ).

• What’s the probability that a war starts in year 1 ends after 2 years?

ℙ(𝘞𝟣, 𝘞𝟤, 𝘗𝟥) = ℙ(𝘞𝟣)ℙ(𝘞𝟤 ∣ 𝘞𝟣)ℙ(𝘗𝟥 ∣ 𝘞𝟣, 𝘞𝟤)

• Actual Research QuestionTM: modeling the continuation probability of
war, ℙ(𝘞𝟤 ∣ 𝘞𝟣) and the probability of conflict resolution,
ℙ(𝘗𝟥 ∣ 𝘞𝟣, 𝘞𝟤).

11 / 24



Probability of war resolution

• Suppose we observed country-dyads over 3 years

• In each year the dyad can be at war (𝘞𝘵 ) or at peace (𝘗𝘵 ).

• What’s the probability that a war starts in year 1 ends after 2 years?

ℙ(𝘞𝟣, 𝘞𝟤, 𝘗𝟥)

= ℙ(𝘞𝟣)ℙ(𝘞𝟤 ∣ 𝘞𝟣)ℙ(𝘗𝟥 ∣ 𝘞𝟣, 𝘞𝟤)

• Actual Research QuestionTM: modeling the continuation probability of
war, ℙ(𝘞𝟤 ∣ 𝘞𝟣) and the probability of conflict resolution,
ℙ(𝘗𝟥 ∣ 𝘞𝟣, 𝘞𝟤).

11 / 24



Probability of war resolution

• Suppose we observed country-dyads over 3 years

• In each year the dyad can be at war (𝘞𝘵 ) or at peace (𝘗𝘵 ).

• What’s the probability that a war starts in year 1 ends after 2 years?

ℙ(𝘞𝟣, 𝘞𝟤, 𝘗𝟥) = ℙ(𝘞𝟣)

ℙ(𝘞𝟤 ∣ 𝘞𝟣)ℙ(𝘗𝟥 ∣ 𝘞𝟣, 𝘞𝟤)

• Actual Research QuestionTM: modeling the continuation probability of
war, ℙ(𝘞𝟤 ∣ 𝘞𝟣) and the probability of conflict resolution,
ℙ(𝘗𝟥 ∣ 𝘞𝟣, 𝘞𝟤).

11 / 24



Probability of war resolution

• Suppose we observed country-dyads over 3 years

• In each year the dyad can be at war (𝘞𝘵 ) or at peace (𝘗𝘵 ).

• What’s the probability that a war starts in year 1 ends after 2 years?

ℙ(𝘞𝟣, 𝘞𝟤, 𝘗𝟥) = ℙ(𝘞𝟣)ℙ(𝘞𝟤 ∣ 𝘞𝟣)

ℙ(𝘗𝟥 ∣ 𝘞𝟣, 𝘞𝟤)

• Actual Research QuestionTM: modeling the continuation probability of
war, ℙ(𝘞𝟤 ∣ 𝘞𝟣) and the probability of conflict resolution,
ℙ(𝘗𝟥 ∣ 𝘞𝟣, 𝘞𝟤).

11 / 24



Probability of war resolution

• Suppose we observed country-dyads over 3 years

• In each year the dyad can be at war (𝘞𝘵 ) or at peace (𝘗𝘵 ).

• What’s the probability that a war starts in year 1 ends after 2 years?

ℙ(𝘞𝟣, 𝘞𝟤, 𝘗𝟥) = ℙ(𝘞𝟣)ℙ(𝘞𝟤 ∣ 𝘞𝟣)ℙ(𝘗𝟥 ∣ 𝘞𝟣, 𝘞𝟤)

• Actual Research QuestionTM: modeling the continuation probability of
war, ℙ(𝘞𝟤 ∣ 𝘞𝟣) and the probability of conflict resolution,
ℙ(𝘗𝟥 ∣ 𝘞𝟣, 𝘞𝟤).

11 / 24



Probability of war resolution

• Suppose we observed country-dyads over 3 years

• In each year the dyad can be at war (𝘞𝘵 ) or at peace (𝘗𝘵 ).

• What’s the probability that a war starts in year 1 ends after 2 years?

ℙ(𝘞𝟣, 𝘞𝟤, 𝘗𝟥) = ℙ(𝘞𝟣)ℙ(𝘞𝟤 ∣ 𝘞𝟣)ℙ(𝘗𝟥 ∣ 𝘞𝟣, 𝘞𝟤)

• Actual Research QuestionTM: modeling the continuation probability of
war, ℙ(𝘞𝟤 ∣ 𝘞𝟣) and the probability of conflict resolution,
ℙ(𝘗𝟥 ∣ 𝘞𝟣, 𝘞𝟤).

11 / 24



Law of Total Probability

ΩB

𝘈𝟣 𝘈𝟤 𝘈𝟥

• Often we only have disaggregated probabilities.

• 𝘉 = sampling a Trump supporter from either Cambridge or Somerville.
• We know the prop. of Trump supporters in each city from precinct data.
• How to calculate the overall probability of 𝘉?

• A partition is a set of mutually disjoint events whose union is Ω.
• The law of total probability (LTP) states if 𝘈𝟣, … , 𝘈𝘬 is a partition:

ℙ(𝘉) =
𝘬

∑
𝘫=𝟣

ℙ(𝘉 ∣ 𝘈𝘫)ℙ(𝘈𝘫)

• Overall probability = weighted sum of within-partition probabilities
• Weights are the probability of the particular partition
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A mixture of cities

• Randomly drawing voters from either Cambridge or Somerville:

• Camb. had 50k voters and Somer. had around 40k, so:
• Pr(Camb.) = 𝟢.𝟧𝟨 and so Pr(Somer.) = 𝟢.𝟦𝟦

• The state provides the following election results for each city:

• Pr(Trump|Camb.) = 𝟢.𝟢𝟨𝟨
• Pr(Trump|Somer.) = 𝟢.𝟣𝟢𝟥

• To get the overall turnout rate, ℙ(Trump), we can apply the LTP:

Pr(Trump) = Pr(Trump|Camb.)Pr(Camb.) + Pr(Trump|Somer.)Pr(Somer.)
= 𝟢.𝟢𝟨𝟨 × 𝟢.𝟧𝟨 + 𝟢.𝟣𝟢𝟥 × 𝟢.𝟦𝟦
= 𝟢.𝟢𝟪𝟤
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2/ Bayes’s Rule



QAnon

You meet a man named Steve and he tells you
that he is a Republican. You have been
interested in meeting someone who believes
in the QAnon conspiracy theory. Given what
you know about Steve, would you guess that
he believes in QAnon or not?

• Common response: probably believes in QAnon since believers tend to
be Republicans.

• Base rate fallacy: ignores how uncommon QAnon believers are!
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Visualizing QAnon support
Qanon

nonbelievers

ℙ(�∣not �)ℙ(not �)

ℙ(�∣�)ℙ(�)
+ℙ(�∣�)ℙ(�)

Chance a random Republican believes QAnon =  

Qanon
nonbelievers

Qanon
believers

ℙ(�∣�)

ℙ(�∣not �)

ℙ(not �)ℙ(�)
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Bayes’ rule

• Reverend Thomas Bayes (1701–61): English minister and statistician

• Bayes’ rule: if ℙ(𝘉) > 𝟢, then:

ℙ(𝘈 ∣ 𝘉) = ℙ(𝘉 ∣ 𝘈)ℙ(𝘈)
ℙ(𝘉)

= ℙ(𝘉 ∣ 𝘈)ℙ(𝘈)
ℙ(𝘉 ∣ 𝘈)ℙ(𝘈) + ℙ(𝘉 ∣ 𝘈𝘤)ℙ(𝘈𝘤)
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Why is Bayes’ rule useful?

• What is the probability of some hypothesis given some evidence?

• ℙ(QAnon ∣ Republican)?

• Often easier to know probability of evidence given hypothesis.

• ℙ(Republican ∣ QAnon)

• Combine this with the prior probability of the hypothesis.

• Prior: ℙ(QAnon)
• Posterior: ℙ(QAnon ∣ Republican)

• Applying Bayes’ rule is often called updating the prior.

• ℙ(QAnon)⇝ ℙ(QAnon ∣ Republican)
• How does the evidence change the chance of the hypothesis being true?
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Uses of Bayes’ rule

• Medical testing:

• Want to know: ℙ(Disease ∣ Test Positive)
• Have: ℙ(Test Positive ∣ Disease) and ℙ(Disease)

• Predicting traits from names:

• Want to know: ℙ(African American ∣ Last Name)
• Have: ℙ(Last Name ∣ African American) and ℙ(African American)

• Spam filtering:

• Want to know: ℙ(Spam ∣ Email text)
• Have: ℙ(Email text ∣ Spam) and ℙ(Spam)
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Medical tests

• Suppose you go and get a COVID-19 test and it comes back positive!

• Let a positive test be 𝘗𝘛 .

• What’s the probability you actually have COVID-19?

• Let having COVID be labeled 𝘊 .
• Question: What is ℙ(𝘊 ∣ 𝘗𝘛)?

• Components for calculating Bayes’ rule:

• ℙ(𝘗𝘛 |𝘊) = 𝟢.𝟪: true positive rate
• ℙ(𝘗𝘛 ∣ 𝘊 𝘤 ) = 𝟢.𝟢𝟢𝟧: false positive rate
• ℙ(𝘊) = 𝟢.𝟢𝟢𝟩 rough prevalance of active COVID cases.
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Applying Bayes’ rule to COVID tests

• Use the law of total probability to get the denominator:

ℙ(𝘗𝘛) = ℙ(𝘗𝘛 ∣ 𝘊)ℙ(𝘊) + ℙ(𝘗𝘛 |𝘊 𝘤)ℙ(𝘊 𝘤)
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3/ Independence



Independence
• Heart of Bayes’s rule: knowing 𝘉 occurs often changes probability of 𝘈.

• What if 𝘉 provides no information? ⇝ independence

• Two events 𝘈 and 𝘉 are independent if ℙ(𝘈 ∩ 𝘉) = ℙ(𝘈)ℙ(𝘉)

• Sometimes written as 𝘈 ⟂⟂ 𝘉
• Symmetric: 𝘈 ⟂⟂ 𝘉 equivalent to 𝘉 ⟂⟂ 𝘈
• Events that are not independent are dependent.

• Important consequence: if 𝘈 ⟂⟂ 𝘉 and ℙ(𝘉) > 𝟢 then:

ℙ(𝘈|𝘉) = ℙ(𝘈 ∩ 𝘉)
ℙ(𝘉) = ℙ(𝘈)ℙ(𝘉)

ℙ(𝘉) = ℙ(𝘈)

• Knowing 𝘉 occurs has no impact on the probability of 𝘈.
• Works other way too: if 𝘗(𝘈) > 𝟢 and 𝘈 ⟂⟂ 𝘉⇝ ℙ(𝘉 ∣ 𝘈) = ℙ(𝘉).

• Common misunderstanding: independent is different than disjoint!

• Mutually exclusive events provide information!
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• Mutually exclusive events provide information!
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Independence example

• If we have a gathering of size 𝘯 drawn randomly from population of MA
with current COVID infection rate of 1.37%, what’s the probability
someone in attendance is infected?

• When seeing “prob. of at least one”⇝ work with complement:

ℙ(At least one COVID case at gathering)
= 𝟣 − ℙ(No COVID cases at gathering)
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Independence and random sampling
• How we draw the random sample matters:

• Sample 𝘯 > 𝟣 with replacement⇝ independent events
• Sample 𝘯 > 𝟣 without replacement⇝ dependent events

• Sampling with replacement 𝘯 for gathering:

ℙ(No COVID cases at gathering)
= ℙ(No COVID for Person 1 ∩ ⋯ ∩ No COVID for Person 𝘯)
= ℙ(No COVID for Person 1 ) ⋯ ℙ(No COVID for Person 𝘯)
= (𝟣 − 𝟢.𝟢𝟢𝟩)𝘯

• Using the complement:

ℙ(At least one COVID case at gathering) = 𝟣 − (𝟣 − 𝟢.𝟢𝟢𝟩)𝘯

• 𝘯 = 𝟧⇝ prob of 0.035
• 𝘯 = 𝟣𝟢𝟢⇝ prob of 0.5
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Conditional independence

• 𝘈 and 𝘉 are conditionally independent given 𝘌 if

ℙ(𝘈 ∩ 𝘉 ∣ 𝘌) = ℙ(𝘈 ∣ 𝘌)ℙ(𝘉 ∣ 𝘌)

• Massively important in statistics and causal inference.

• Warning: independence ≠ conditional independence.

• Cond. ind. ⇏ ind.: flipping a coin with unknown bias.
• Ind. ⇏ cond. ind.: test scores, athletics, and college admission.
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